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Executive Summary 

Introduction 

Accelerated Bridge Construction (ABC) methods are relatively new in the U.S. and Idaho. ABC requires 

that bridge precast concrete components be effectively connected to one another in the field. Currently 

there is a trend of using Ultra-High Performance Concrete (UHPC) for field connections. There have been 

several experimental tests showing that precast bridge deck panels or girders may be effectively 

connected by placing UHPC in 6-in. wide closure pours between the precast elements. As an alternative, 

Idaho Transportation Department (ITD) is proposing to place High-Early Strength (HES) concrete with 

fibers with a minimum compressive strength of 5 ksi in 28 days in 10-in. closure pours between girders.  

The advantages of the alternative material and connection detail include: (1) HES concrete with fibers 

can be batched in the ready mix plant, brought to the field in the mixing truck, and placed similar to 

conventional concrete; (2) ITD allows removal of forms for HES concrete after one day, while for UHPC a 

minimum curing time of four days and a compressive strength of 14 ksi is required before removal of the 

forms; and (3) the estimated cost saving for one project alone is approximately $100,000. Note that 

UHPC is a proprietary material with an installed cost of $10,000-$15,000 per cubic yard based on actual 

bid prices for UHPC in Idaho Transportation Department bridge projects between 2016 and 2018. 

Project Objectives and Tasks 

The project objectives are: (1) obtain experimental data on the behavior of six mixes containing HES 

concrete Class 50AF with and without polypropylene fibers, select the optimum mix, and perform 

laboratory tests on larger specimens; and (2) use the experimental results to create a computer model 

of the proposed closure pour detail that is capable of assessing the connection strength and provide an 

indication of fatigue performance. To carry out the above objectives, the following tasks were assigned. 

This report focuses on Tasks 1-5. 

 Task 1: Perform a literature review. 

 Task 2: Select HES concrete mixes with and without polypropylene fibers. Determine material 

properties and choose the optimum mix.  

 Task 3: Obtain bond strength between the optimum mix and the precast concrete. In addition, 

perform headed bar tensile strength tests in a closure pour connection. The specimen is to 

represent the lower half portion of a closure pour section.     

 Task 4: Perform three-point and four-point flexural tests of beams composed of two precast 

segments with the optimum mix in ITD’s 10-in. closure pour detail in the middle.  

 Task 5: Develop finite element (FE) models for headed bar pull-out specimens as well as the 

beam specimens and compare results with the experimental results. In addition, investigate the 

adequacy of the connection with the optimum mix between Deck Bulb-T girders in a typical 

bridge. Using the AASHTO LRFD design requirements, check adequacy of connection for 

Strength I, Service I, and Fatigue I Limit States.  
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 Task 6: Make a presentation to the ITD Bridge Section staff describing the project and results.  

 Task 7: Submit the final project report. 

Task 1 

In the literature review, five main sections were covered: (a) an overview of the field-cast connections of 

prefabricated bridge elements; (b) related testing methods; (c) preparation of laboratory concrete 

specimens; (d) materials needed for the closure pour, including bonding agent and polypropylene fibers; 

and (e) literature needed for computer modeling. Literature review revealed that high performance 

fiber-reinforced concrete has been used as an alternate material to UHPC in connecting certain bridge 

precast components. Work by others gave insight as to the appropriate ASTM testing methods and 

sample preparation techniques. It was also concluded that rebar bond-slip plays an important role in 

numerical modeling. 

Task 2  

Task 2 was to select HES concrete mixes with and without polypropylene fibers and other additives. This 

task was done with direct input from the TAC members. Six mixes were selected with different amounts 

of fiber with and without Shrinkage Reducing Admixture (SRA) and Bonding Admixture (BA). 

Compressive strength, tensile strength, and shrinkage behavior of each mix were determined. Table ES1 

shows these mixes, and the corresponding material properties using ASTM standard tests methods. 

Table ES1. HES mix variables and the measured average properties. 
 

Mix 

Variables 1-day  
compressive  
strength (psi) 

28-day  
compressive  
strength (psi) 

Split tensile  
strength (psi) 

Shrinkage 
(microstrain) Fiber 

(lb/yd3) 
SRA BA 

A (Control) - - - 3,196 7,752 767 736 

B 0.75  - - 3,442 8,471 634 655 

C 1.5  - - 3,551 7,860 733 673 

D 1.5   - 3,074 8,864 837 522 

E 0.75    2,550 7,710 749 555 

F -   2,723 8,161 765 528 

 

Mix D, containing 1.5 lb/yd3 of fiber and shrinkage reducing admixture, performed the best. It had the 

largest compressive and tensile strength values and the lowest shrinkage value. These values were 8,864 

psi, 837 psi, and 522 microstrain, respectively. For computer modeling, modulus of elasticity and 

Poisson’s ratio of the optimum mix were also obtained. 

Task 3  

Task 3 was to obtain the interface bond strength and perform headed bar pull-out tests. With input 

from TAC, Mixes D and E with and without bonding agent were selected for the ASTM C78 four-point 

bending tests. The interface surfaces of the precast segments were prepared to have exposed 
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aggregates. Mix D without the bonding agent performed the best with a bond strength (modulus of 

rupture) value of 612 psi. In contrast, De la Varga, Haber, and Graybeal (2016) obtained a value of 712 

psi for the interface bond strength between UHPC and precast concrete with exposed aggregate 

surface.(1) 

Next, headed bar tensile strength tests were performed in a closure pour connection with the optimum 

mix. The specimen represents the lower half portion of a closure pour section. Figure ES1 shows the 

headed bar pull-out specimen fabrication sequence. The specimens were 4 in. thick, 9 in. wide and 20 in. 

long. The length consisted of a 10-in. closure pour segment in the middle and two 5-in. long precast 

segments at the ends. No. 5 headed bars were installed at 3-in. spacing between opposing bars. Six 

specimens were tested. Table ES2 shows the pull-out test results. In all tests the initial crack occurred at 

the upper interface between closure pour and precast at the average force of 5,820 lb. The average 

ultimate pull-out force was 12,511 lb. Even after the cracking of the upper interface, the strut action 

between the opposing lapped bars was effective, resulting in upper bar stress of 40.4 ksi or 67% of the 

steel specified yield strength. The most useful data was the relationship between the total tensile force 

in the specimen and the force carried by the head of the upper bars. This relationship was used to 

calibrate the FE model of the pull-out specimen. 

 
Figure ES1. Headed bar pull-out specimen fabrication sequence. 

 

Table ES2. Headed bar pull-out test average values. 
 

Cracking force  
(lb) 

Force carried by the  
head at cracking force  

(lb) 

Ultimate force  
(lb) 

Force carried by the  
head at ultimate load  

(lb) 

Stress in the upper  
bar at ultimate force 

(ksi) 

5,820 239 12,511 3,516 40.3 

Task 4 

Task 4 was to perform three-point and four-point flexural tests of beams composed of two precast 

segments with the optimum mix closure pour segment in the middle. The beams had a span of 72 inches 

between the supports and were 12 inches in width and 8 inches in height. A total of four No. 5 headed 

(a) Rebars (b) Precast concrete 
segments  

(c) Specimen with 
closure pour segment 
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bars, two from each side, created a lap splice inside the closure at the bottom. Regular No. 5 reinforcing 

bars were used in a similar fashion at the top. The ITD’s 10-in. closure pour detail was used. Figure ES2 

shows the components of the beam specimen. Three of each beam tests were performed. In the three-

point testing, the load at the center was applied on a 10 in. x 20 in. steel plate in order to simulate an 

AASHTO truck wheel patch. Table ES3 shows the beam test results. In both cases of three-point bending 

and four-point bending, the initial crack always formed on the lower right of the interface between 

closure pour and precast. This was a limitation of the beam specimens; i.e., unsymmetrical placement of 

reinforcing and the small width of the beam. Both the three-point and four-point loading tests had 

almost the same ultimate moment capacity of about 147 kip-in. The mid-span moment versus the bar 

stress next to the head of the headed bars (where the strain gages were installed) provided the most 

useful information. This data was used for comparing results with the FE model results.  

 
Figure ES2. Components of the beam specimen. 

 

Table ES3. Summary of average values of beam test results. 
 

Test  
type 

Cracking  
force  
(lb) 

Cracking 
 moment  
(kip-in.)* 

Ultimate 
force 
(lb) 

Ultimate 
moment 
(kip-in.) 

Mid-span displacement 
at ultimate force  

(in.) 

3-point 2,867 44.4 9,492 147.1 0.283 

4-point 2,933 35.2 12,209 146.5 0.328 
       * For the three-point bending test, the moment is calculated at the center, although crack is at the interface. 

Task 5  

This task had two components. The first one was to develop the FE models for headed bar pull-out and 

the beam specimens and compare the results with the experimental test results. In addition, the task 

required investigation of the adequacy of the connection with the optimum mix between the Deck Bulb-

T girders of a typical bridge. ANSYS software was used for FE modeling. 

The FE models of the pull-out and beam specimens performed well in the linear region and resulted in 

very good agreements with the experimental results of moment versus stress in the bar next to the 

head. See Figure ES3 for the three-point bending test comparison. The agreement in the nonlinear 

region was not as good with the beam bending tests. Although not measured in the experiments, the FE 

model of the beam showed a larger bar stress at the interface compared to the bar stress next to the 

head. Rebar bond-slip had a big role in capturing the experimental results. With no bond-slip, the head 

(a) Precast concrete segments and steel bars (b) Beam with closure pour concrete  
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carries less force in the FE model than what was observed in the experiments. This was true for both the 

pull-out test and the beam bending test.  

 
Figure ES3. Moment vs. rebar stress for the three-point bending test. 

Next, a bridge with Deck Bulb-T girders connected with Mix D was modeled in ANSYS. This bridge is the 

new design of the SH-36 Bridge over Bear River near Preston, Idaho. For this task linear-elastic behavior 

was considered. The closure pour connection performed well under three AASHTO limit states: (1) 

Strength I Limit State for flexural capacity; (2) Service I Limit State for controlling flexural cracking; and 

(3) Fatigue I Limit State for infinite load-induced fatigue life.  

Conclusions and Future Work 

The experimental laboratory work consisting of small specimen testing and larger samples with headed 

bars were all completed. The FE results were very good in the linear regions, but the beam FE model in 

the nonlinear portion could be improved. Analysis of the ITD’s 10-in. closure pour behavior with Mix D 

longitudinally placed between precast girders of a bridge met all the applicable AASHTO limit state 

design requirements.  

The second phase of this project has been approved. This phase involves instrumenting the SH-36 Bridge 

over Bear River with strain gages placed over the headed bars and on the concrete surface below the 

bridge deck along a transverse section close to the southwest abutment. Early in 2018, the bridge 

girders were fabricated. They will be installed during the summer and early fall 2018. In May 2018, the 

bridge girder headed bars were instrumented in the precasting yard. Based on the results of the first 

phase, headed bars were instrumented next to the head and next to the precast interface. The closure 

pour material for this bridge is a mix similar to Mix D. Among the tasks planned are: strain data 

measurement in the bridge under a known truck load, data acquisition under commercial truck loading, 

data analysis, and refining the FE model of the ITD’s 10-in. closure pour detail. 
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Chapter 1 

Introduction 

Description of the Problem 

Accelerated Bridge Construction (ABC) methods are relatively new in the U.S. and Idaho. ABC requires 

that bridge precast concrete components be effectively connected to one another in the field. To this 

end, there is currently a growing nationwide trend to use Ultra-High Performance Concrete (UHPC) for 

field connections. There have been several experimental tests showing that precast bridge deck panels 

or girders may be effectively connected by placing UHPC in 6-in. wide closure pours between the precast 

elements. UHPC allows full strength development of #6 bars extended from precast elements into the 

narrow 6-in. closure pours. Although UHPC is an excellent material with a compressive strength of up to 

30 ksi, it has the following disadvantages:  

 It is a proprietary material with an installed cost of $10,000-$15,000 per cubic yard based on 

actual bid prices for UHPC in Idaho Transportation Department bridge projects between 2016 

and 2018. 

 Its proper installation requires very rigorous preparation and quality control, which at times may 

be difficult to achieve. 

 It is extremely fast setting and thus it must be batched in small quantities. 

 It requires special portable field mixing equipment, and as such is labor intensive. 

 Because of its initial consistency (i.e., it is quite “watery”), its placement on steep grades is 

problematic.  

As an alternative, ITD is proposing to place High-Early Strength (HES) concrete with fibers (with a 

minimum compressive strength of 5 ksi in 28 days) in the 10-in. closure pours between girders. The 

advantages of this approach are: 

 HES concrete with fibers can be batched in the ready mix plant, brought to the field in the 

mixing truck, and placed similar to a conventional concrete.  

 ITD allows removal of forms for HES concrete after one day, while for UHPC a minimum curing 

time of four days and a compressive strength of 14 ksi is required before removal of the forms.  

 The cost is not much higher than the cost of conventional concrete ($600-$700 per cubic yard). 

The estimated cost saving versus the use of UHPC or high strength mortar for one project alone 

is approximately $100,000. 

Regarding the first item above (i.e., fibers in HES concrete), it should be noted that HES concrete has 

high cement content in order to accelerate curing. This creates high hydration temperatures causing 

shrinkage cracks. The primary reason that ITD prefers adding fibers is to reduce shrinkage cracks. The 

fibers are not intended to increase compressive or tensile strengths of the concrete. 
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Regarding the second item above (i.e., removal of forms for HES concrete after one day), ITD requires 

that HES concrete to have a compressive strength of 3 ksi in 24 hours. Only when this strength is met, 

the forms can be removed. In addition, the ITD bridge plans require that the traffic cannot be placed on 

top of the girders before HES closure pour and end diaphragm concretes achieve 5 ksi compressive 

strength. The HES concrete usually achieves 5 ksi compressive strength within 7 days. In practice, it 

usually takes more than 7 days before the bridge is open to traffic after placing closure pours between 

girders.  Although ITD’s 50AF concrete is specified to have a minimum strength of 5 ksi in 28 days, 

typically a strength of 8 ksi is achieved within this time frame, which closely matches ITD’s required 

concrete strengths for precast elements.   

Project Objectives 

The project objectives are: 

 Obtain experimental data on the behavior of several mixes containing HES concrete Class 50AF 

with and without polypropylene fibers and select the optimum mix for use as a closure pour 

material between Deck Bulb-T Girders.  

 Use the experimental results to create a computer model of the proposed closure pour detail 

that (a) is capable of assessing the connection strength under one-time truck load; and (b) can 

provide an indication of fatigue performance under repeated loading.  

Project Tasks 

The project tasks are: 

 Task 1: Perform a literature review on the connections used in precast bridge deck components. 

 Task 2: In collaboration with ITD Technical Advisory Committee (TAC), select high-early strength 

concrete mixes with and without polypropylene fibers. Determine compressive strength, tensile 

strength, and shrinkage behavior of the concrete mixes. Select the optimum mix. For computer 

modeling, obtain the modulus of elasticity and Poisson’s ratio of the optimum mix.  

 Task 3: Obtain bond strength between the optimum mix and the precast concrete. In addition, 

perform headed bar tensile strength tests in a closure pour connection. The specimen is to 

represent the lower half portion of a closure pour section. 

 Task 4: Perform three-point and four-point flexural tests of beams composed of two precast 

segments with the optimum mix closure pour segment in the middle.  The ITD’s 10-in. closure 

pour detail is to be used for the beam specimens.  

 Task 5: Develop finite element (FE) models for headed bar pull-out specimen as well as the 

beam specimens and compare results with the experimental results.  In addition, investigate the 

adequacy of the connection with the optimum mix between Deck Bulb-T girders of a span in a 

typical bridge.  Using the AASHTO LRFD design requirements, check adequacy of connection for 

Strength I, Service I, and Fatigue I Limit States.  

 Task 6: Make a presentation to the ITD Bridge Section staff describing the project and results.  
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 Task 7: Submit the final project report. 

This report presents Tasks 1 to 5. 

Report Overview 

This report is divided into seven chapters: 

 Chapter 1 presented an introduction to the research problem, the objectives, and project tasks.  

 Chapter 2 presents the literature review. 

 Chapter 3 presents experimental work methodology, equipment used and data analysis. 

 Chapter 4 presents the laboratory experimental results. 

 Chapter 5 describes the finite element modeling of specimens tested in the laboratory.  It also 

provides a summary of comparison of the FE and experimental results. 

 Chapter 6 presents a bridge computer model and AASHTO LRFD design requirements. 

 Chapter 7 presents a summary, conclusions and future work. 
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Chapter 2 

Literature Review 

Introduction 

The literature review will examine prior research that is applicable to this project. There are five main 

sections within this chapter. The first section gives an overview of the field-cast connections of 

Prefabricated Bridge Elements (PBE). It includes components made with UHPC as well as alternative 

connection materials available, specifically high-early-strength concrete with fibers. The second section 

reviews literature relating to testing methods with a comprehensive breakdown of research done in 

areas of shrinkage and bond strength. The third section addresses the sample preparation of concrete 

specimens. This section reviews surface preparation as well as moisture at the interface. The fourth 

section examines the materials needed for the closure pour including bonding agent and polypropylene 

fibers. The fifth section provides literature review on information needed for computer modeling, 

including experimental and numerical research on the bond between reinforcing bars and concrete. The 

chapter concludes with a summary of the literature review and application to this project. 

Field-Cast Connections 

Field-cast connections are a necessary component for ABC. These components, which are cast in the 

field, connect the prefabricated bridge elements together. The most common materials utilized for field-

cast connections are high-strength grouts and UHPC. Field-cast connections have been used for a variety 

of bridge components including cap beams, bridge girders (i.e. deck bulb-T), and deck panels. This 

research is limited to the connection between deck bulb-T girders. Depicted in Figure 1 are a typical 

cross-section of a prestressed concrete bridge and a view of the closure pour connection detail. The 

connection detail shows the interlacing rebars and closure pour concrete. As the connection detail 

becomes more complex, rebar can start to limit the amount of space inside the closure which causes 

congestion and can make construction and pouring more difficult. Two examples of connection details 

are shown in Figure 2. Ways to alleviate the rebar congestion problem are to design better connection 

details as well as to use materials suited to the application. Material flowability is important for 

consolidation and placement within the connection.  

Grout is used as a material for field-cast connections due to its good flowability. Non-shrink 

Cementitious Grout (NSCG) was developed to mitigate the material shrinkage cracking. Although grout 

has been used extensively, other materials have been used to reduce the cost of the bridge either 

construction or lifetime costs as a result of improved performance of the connection. As a viable 

alternative in PBE connections, UHPC has increased in popularity with its application to ABC and is 

further discussed in the next section.    
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Figure 1. Drawing of SH-55 over Payette River Bridge in Cascade, Idaho. (NTS)  
(Drawings from the Idaho Transportation Department, Bridge Section). 

 

Figure 2. Sample closure connection details.(2) 

Ultra-High Performance Concrete (UHPC) 

Standard tests have shown that UHPC is suited for applications in bridge construction. Graybeal (2014) 

reported a UHPC with a compressive strength of 24 ksi, split tensile strength of 1.3 ksi, and long-term 

drying shrinkage of 550 microstrain.(3) These values far exceed typical normal weight concrete values of 

4 ksi and 0.4 ksi, for compressive and tensile strengths, respectively. The high strength values, low 

(a) Typical cross-section view 

(b) Closure pour detail 

(a) U-Bar (b) Interlaced straight 

bar 
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shrinkage, and good durability of the UHPC make it an ideal material to use for connecting precast 

concrete bridge components. Although UHPC is gaining popularity, it is still not as readily available as 

normal weight concrete, and it is a proprietary product. This, along with extensive preparation and 

installation work, make the cost of UHPC high, ranging between $2,000 and $4,000 per cubic yard.(4, 3) 

According to ITD the installed cost (i.e., material and labor) of UHPC is approximately $15,000 per cubic 

yard. Given the literature, UHPC will be used as a comparison to evaluate the proposed concrete mix in 

terms of performance and overall costs. A number of studies conducted by Graybeal (2010) have 

investigated the performance of UHPC in PBE connections.(5) In the same study, Graybeal examined the 

performance of large-scale panels with typical closure pour connections shown in Figure 2. In that study, 

the researchers subjected the panels to cyclic and static structural loading. Another study determined 

that UHPC outperformed grout in PBE connections (Haber, et al. 2016).(2) Researchers found similar 

results when comparing multiple UHPC concretes and NSCG (Haber and Graybeal 2016).(6) Despite the 

advantages of UHPC, there still remains a cost-prohibitive element to its use. 

Alternative Materials 

 A proposed alternative to UHPC is high-early strength concrete with fibers. According to ITD bridge 

engineers the cost of using HES concrete is comparable to conventional concrete ($600-$700 per cubic 

yard). The estimated cost saving of using HES over UHPC can range from $50,000 to $100,000. Although 

most research involving prefabricated bridge element connections focuses on the use of grout and 

UHPC materials for field-cast connections, there is insufficient research involving a more conventional 

high-early strength concrete mix. The only significant research found was a study conducted for the 

Virginia Department of Transportation (VDOT) by Hoomes et al. (2017) which evaluated high-

performance fiber-reinforced concrete (HPFRC) for bridge deck connections and joints, including closure 

pours.(7) Their research was focused on cracking and crack opening which occurs between link slabs in 

bridges. An example of a UHPC link slab connection detail is depicted in Figure 3.   

Hoomes et al. determined the most advantageous mix based on performance and respective costs. 

Performance parameters included: bond strength, flexural toughness, deflection hardening, shrinkage, 

and fresh concrete properties.(7) The study concluded that Hybrid Fiber Reinforced Concrete (HyFRC) 

containing polypropylene and PVA performed to specifications. The total fiber content for this mixture 

was 2% by volume. The higher dosage of fibers reduced workability and needed increased amounts of 

high-range water-reducing admixture, which caused segregation of aggregates. Although it was not the 

highest performing mix, it was the most economical and user-friendly. VDOT has shown an interest for 

alternative materials, specifically (HES) concrete, for use in bridges. VDOT has used HES concrete in 

connecting prefabricated deck components in several bridge projects. 
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Figure 3. UHPC link slab connection detail on SR962G Bridge in Owego, NY (Graybeal, 2014).(3) 

 

Testing Methods 

Shrinkage 

Shrinkage in concrete is the reduction in volume due to loss of water. This occurs in the early age, in its 

plastic state prior to hardening, and over long term, after the concrete hardens. Early-age shrinkage is 

also known as plastic shrinkage and the long-term shrinkage is mainly due to drying shrinkage (Mamlouk 

and Zaniewski, 2017).(8) Plastic shrinkage can be controlled by preventing the loss of water, from 

evaporation of surface moisture or absorption of concrete forms, until the concrete has set. Excessive 

volume change can cause cracks, known as shrinkage cracks, in the concrete which increases 

permeability. Minimizing shrinkage is important particularly in connections for PBE. Shrinkage reducing 

admixtures and fibers significantly reduce cracking.   

The standard test method for shrinkage is ASTM C157, Standard Test Method for Length Change of 

Hardened Hydraulic-Cement Mortar and Concrete.(9) A prismatic beam of 3 in. x 3 in. cross-section and 

11.25 in. length with gage studs embedded into the ends is used for this method. This test measures the 

length change after the concrete has hardened and cured for a set amount of time. Most often the 

drying shrinkage is reported. Graybeal (2014) reported the long-term shrinkage for UHPC at 550 

microstrain, which is used as a comparison value for this study.(3) 

Bond between Precast Concrete and Field-cast Material  

This section examines the methods used to evaluate bond strength and the different factors that 

contribute to bond behavior. Durability of connections utilized in PBE is critical to the overall 

performance of the bridge. Poor bond between precast concrete and field-cast concrete could result in 

cracks at the interface allowing water to penetrate into the deck and cause damage. Some of the 

research discussed here investigate specific applications and may not directly apply to the current study 

but they will still be used to evaluate bond performance. 



 
Chapter 2. Literature Review 

9 
 

Common tests for determining bond strength are flexural beam, splitting cylinder, slant-shear, and 

direct tension pull-off.(6, 10, 11, 12, 13, 14, 15) These tests are based on ASTM standard test methods. Bond 

strength tests are shown in Figure 4.  All test specimens use segments of previously cast concrete (e.g. 

precast or another concrete base) and connection material (e.g. grout, UHPC, or new concrete). These 

tests are intended to determine the bond behavior of the interface between the two materials. 

 
Figure 4. Tests for characterizing bond between precast concrete and field-cast connection material  

(De la Varga et al. 2017).(11) 

Each test method puts the interface into a different state of stress (e.g. flexure, tensile, or shear). The 

flexural beam test (Figure 4a) is based on ASTM C78, Standard Test Method for Flexural Strength of 

Concrete (Using Simple Beam with Third-Point Loading). This test is performed on a 6 in. x 6 in. x 21 in. 

composite beam with one half containing the base material and the other half containing the closure 

material. Third-point loading is applied and this test puts the bottom portion of interface into a state of 

(a) Flexural beam test (b) Splitting cylinder test 

(c) Slant-shear compression test 

(d) Direct tension pull-off test 
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flexural tension. Splitting cylinder (Figure 4b) is based on ASTM C496, Standard Test Method for Splitting 

Tensile Strength of Cylindrical Concrete Specimens.(16) This test uses a 4 in. x 8 in. or 6 in. x 12 in. 

composite cylinder with halves consisting of the base material and the closure material. A load is applied 

along the length of the cylinder putting the interface into indirect tension. Slant-shear test (Figure 4c) is 

based on ASTM C882, Standard Test Method for Bond Strength of Epoxy-Resin Systems Used with 

Concrete by Slant Shear.(17) This test uses a slant cylinder in which the halves are cast such that a slant 

face is produced to apply a combination of shear and compression at the interface. The direct tension 

pull-off test (Figure 4d) follows ASTM C1583, Standard Test Method for Tensile Strength of Concrete 

Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct 

Tension (Pull-Off Method).(18) Specimens consist of a base concrete slab and a 2 in. thick overlay of the 

connection material. A steel disc is then glued to the top surface and a partially-cored hole is drilled 

approximately 1 in. into the base concrete. This test puts the interface into direct tension. Bond strength 

can be difficult to determine because there are multiple testing methods that can be used, therefore a 

test method should be selected based on the anticipated stresses in the field. Due to the number of 

variations that can contribute to bond strength, some researchers investigating bond performance have 

employed several of the test methods of Figure 3 in their studies.(10, 11, 18) The optimal test method for 

determining bond strength is the flexural beam test, ASTM C78, because it best simulates loading in the 

field.  

Some research has concluded that these tests may not be the true bond strength due to a number of 

factors. These factors include: precast substrate surface preparation, pre-wetting substrate, surface 

cleanliness, differential shrinkage, and differential stiffness.(8, 9, 20) Some of these factors will be discussed 

in the next section.   

Precast Concrete Interface Surface Preparation 

This section presents literature on improving bond strength between precast concrete and closure 

material. Two of the most important factors are surface roughness and moisture at the interface.   

Surface Preparation 

Researchers agree that substrate (i.e., base material) surface preparation has a significant role in terms 

of bond strength (De la Varga et al. 2016; De la Varga et al. 2017; Julio et al. 2004; Santos and Julio 2011; 

Tayeh et al. 2013).(1, 11, 19, 20, 21) One component to surface preparation involves roughening of the 

substrate surface which increases the contact area for the new concrete to bond. In general, research 

shows that the greater the surface roughness, the higher the bond strength.(11) Surface preparation 

methods include wire brushing, jack hammering, pressure washing, sand blasting, and exposing the 

aggregate of the precast concrete.(1, 21) The research has shown that exposed aggregate surface 

preparation is the best method for ensuring the best bond strength.   
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Moisture at the Interface 

Presence of moisture also affects bond strength (De la Varga et al. 2017; Bentz et al. 2017; Julio et al. 

2005; Emmons 1994).(11, 10, 22, 12) This refers to the surface moisture prior to casting the connection 

concrete. Research has revealed opposing conclusions about the need for moisture at the substrate. 

These opposing ideas are often attributed to the testing method that is used. Bentz et al. (2017) 

conducted tests on sets of slant-shear and direct tension specimens that were prepared with different 

substrate finishes and moisture conditions.(10) In the study Bentz et al. employed neutron and X-ray 

radiography to examine the dynamic microstructural rearrangements occurring at the interface during 

curing (i.e. identifying the water movement and densification between the two materials). The two bond 

tests, slant-shear and direct tension, produced different results. Slant-shear tests resulted in higher 

bond strength compared to direct pull-off tests when the substrate was dry. Conversely, when the 

substrate was Saturated Surface Dry (SSD), direct pull-off tests had higher bond strengths compared to 

slant-shear (Bentz et al.). For the dry substrate case, the flow of water from the repair material to the 

substrate causes densification of the layer and this may be the cause of higher slant-shear results. For 

the moist condition, the excess water provided for better hydration and consolidation for the RM 

resulting in higher direct pull-off values.   

Materials 

Bonding Agent 

A bonding agent is a liquid compound applied to a concrete substrate to promote good bonding to new 

or repair concrete. Bonding agents are latex or epoxy based. Literature involving use of bonding agents 

was intended for concrete repair and overlay material applications. Emmons (1994) suggests not using a 

bonding agent because it can produce a vapor barrier that could result in failure.(12)  The experimental 

study by Julio et al. (2005) consisted of preparing sets of slant-shear specimens with each pair treated 

with a different substrate finish (e.g. as-cast, wire-brushing, partially chipped, and sand-blasted).(22) The 

research group concluded that a bonding agent is not necessary, provided the surface roughness is 

adequate. The sand-blasted specimen without a bonding agent performed better than the specimen 

with a bonding agent. From the literature, use of bonding agents may not be beneficial, particularly 

because the applications for bonding agents were mainly for repair or overlays. These types of 

applications induce shear and direct tension stresses at the interface rather than primarily flexural 

tension stress encountered in the current project. 

Several commercially available bonding agents were compared for use with the current study. There are 

two types of bonding agents, re-emulsifiable and non-re-emulsifiable that act differently in the presence 

of water. In this study the researchers chose to only compare re-emulsifiable bonding agents because of 

their property to re-wet after initial application, a preferable method in the field. Bonding agents from 

four different companies were evaluated and compared based on the data provided by each company 

for their products. The comparisons of these products were problematic since there are multiple testing 

methods used to determine bond strength of a bonding agent. These testing methods included ASTM 

C1059, Standard Specification for Latex Agents for Bonding Fresh to Hardened Concrete, and ASTM 
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C1042, Standard Test Method for Bond Strength of Latex Systems Used With Concrete By Slant Shear.(23, 

24) Bond strengths for each bonding agent were also compared. Table 1 lists the bonding agents that 

were compared and the strength data from the data sheets provided by the company. No strength 

information was given for MasterProtect P110. Products from Sika and US Mix Company were much 

lower than that of Euclid. In this study the bonding agent Tammsweld produced by Euclid Chemical 

Company was selected because of its highest bond strength value of 4,600 psi. 

Table 1. Bonding agent comparison. 
 

Company Product Strength ASTM 

BASF MasterProtect P110 N/A N/A 

Euclid Chemical Company Tammsweld 4,600 psi C1042 

Sika SikaLiquid Weld 1,300 psi C1059 

US Mix Company Multi-55 
14-day strength, 
Type I: 1,700 psi 
Type II: 1,300 psi 

C1042 

 

Polypropylene Fibers 

One of the most important materials in this study is fibers. Fibers are produced from a variety of 

materials including steel, glass, synthetic, and naturally occurring substances. Depending on the 

application of the concrete mix, a particular fiber might be more suitable. Fibers that are commonly 

used are steel and synthetic. Steel fibers would be added to a mix to increase tensile capacity for use in 

structural applications (Graybeal 2014).(3) A synthetic fiber, such as polypropylene, may be added to 

control cracking (Ahmed et al. 2006; Banthia and Gupta 2006; Madhavi, Raju, and Mathur 2014; Serdar 

et al. 2015).(25, 26, 27, 28) Fibers are typically used for secondary reinforcing (i.e. for crack control), as 

opposed to conventional methods such as wire mesh. The current study is focused on the use of 

polypropylene fibers.  

Polypropylene fibers have been a topic of interest in recent years due to their versatility. Polypropylene 

fibers have a number of properties which include: low specific gravity (S.G. = 0.91), high tensile capacity 

(80 ksi to 101 ksi), and high acid and salt resistance. In addition, they are nonabsorbent, noncorrosive, 

and chemically inert, meaning not reacting with concrete admixtures (Banthia and Gupta 2006; Kakooei 

et al. 2012; Serdar et al. 2015).(26, 29, 28) Fiber lengths typically range from 0.25-2.5 in., and can be either 

monofilament, consisting of single strands, or fibrillated, a bundle of strands. Polypropylene fibers can 

be implemented into any concrete mix, are readily accessible, and are inexpensive, making them a 

suitable option for many applications, including bridge construction. When determining the appropriate 

mix, fiber dosage needs to be considered.  

Research has shown an optimum range of fiber dosage for concrete. Due to the variability of concrete 

mixes and types of fibers used in each study the general findings and conclusion will be presented. Tests 
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conducted by Ahmed et al. (2006) examined fiber dosage rates of 1, 2, and 3 lb/yd3 (fiber dosage is in 

pounds of fiber per cubic yard of concrete).(25) Compressive strength and splitting tensile strength 

increased with increasing fiber content up to 2 lb/yd3, and a decrease in strength at 3 lb/yd3.(25) Ahmed 

et al. also showed a reduction in shrinkage cracking of 83% and 85% with the addition of 2 lb/yd3 and 3 

lb/yd3, respectively. Experimental work conducted by Kakooei et al. (2012) also observed an increase in 

compressive strength with a fiber volume of 1.5-2 kg/m3 (2.5-3.4 lb/yd3).(29)  

Besides the fiber dosage, the actual fiber type can affect the concrete performance. A study by Banthia 

and Gupta (2006) concluded that the geometry of the fibers is important for optimizing shrinkage 

reduction.(26) Fiber dosage rates used were 0.1% (1.5 lb/yd3), 0.2% (3.1 lb/yd3), and 0.3% (4.6 lb/yd3) by 

volume. They tested four different fiber products and had a control test for a baseline to determine 

shrinkage crack reduction. The researchers concluded that longer, finer-sized fibers were better at 

reducing crack widths, and fibrillated fibers were better at controlling shrinkage cracking than 

monofilament fibers.(26) 

Manufacturers provide recommended dosages which range between 1-1.5 lb/yd3.(27) At higher fiber 

dosages, workability is reduced, but this can be remedied with the use of a plasticizer. Using 

polypropylene fibers benefits the concrete in its plastic state and after hardening. Fibers hold the mix 

together while the concrete is still fresh, or plastic, reducing the possibility of segregation and bleeding. 

Segregation is the tendency of the heavier coarse aggregates to move toward the bottom of the 

concrete. Bleeding is a form of segregation; it is when the water in the mix rises to the surface because it 

is lighter than the other constituents. Fibers also reduce the shrinkage cracking. In addition, fibers 

improve the properties of hardened concrete, including: reducing drying shrinkage, increasing resistance 

to abrasion and freeze-thaw, increasing impact resistance, and restraining cracking.   

Experimental and Numerical Literature for Computer Modeling 

This section provides literature review of experimental and numerical research for finite element 

modeling of the closure pour connection detail suggested by ITD and used in this study. More details on 

this section are provided in the thesis by Rashique, U. (2018).(30) 

Bond Strength of Reinforcing Bars in Concrete 

The issue with the steel-concrete bond has been extensively researched since the nineteenth century. 

As a result, deformed, bent, twisted and headed bars were introduced for better bond strength. The 

highly nonlinear and inelastic behavior of concrete and bar slip makes the analytical study of bond-slip 

behavior difficult.  

Mathey and Watstein (1961) conducted experiments on 18 beams and 18 pull-out specimens with 

deformed reinforcing bars and reported on bond strength.(31) Lutz and Gergely (1967) studied the effect 

of the rib face angle on the bond slip.(32) Goto (1971) studied the internal cracks around the reinforcing 

bar.(33) Nilson (1972) proposed a slip function for reinforcing steel.(34) Rao, et al. (2007) tested forty pull-

out specimens for bond strength and its variation.(35) It was observed that ideal pull-out failure occurred 
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in all the specimens with confinement, while the unconfined specimens failed by longitudinal splitting of 

concrete. The maximum bond strength of unconfined concrete was found to be between 50% and 60% 

of that with confinement. 

Headed reinforcing bar is a relatively new technology and only a few literature on bond behavior is 

available. Research by Fynboe and Thorenfeldt (1986), Eligenhausen (1996) and others has shown that 

headed bars have better bond-slip response than hooked and bent bars under monotonic and cyclic 

loading.(36, 37) The headed bar can fail by yielding or fracture. Two other failure modes involving concrete 

failure are pull-out cone failure and side blowout failure as shown in Figure 5. 

One of the most extensive works on strength of headed reinforcing bars was carried out by DeVries 

(1996).(38) They conducted pull-out tests on 140 samples and investigated the effects of variables such as 

embedment depth, clear cover over the bar, spacing of adjacent bars and orientation of the heads on 

bond behavior. The tests were done for both shallow and deep embedments. Shallow embedment was 

defined by the ratio of the embedment length to side cover being less than five. Various bar sizes and 

yield strengths were used. In shallow embedment tests, some bars reached the yield stress plateau and 

went into strain hardening. But in general, bar yielding did not have a significant effect on the ultimate 

pull-out load. Also, the observed result showed a trend that the bars with development length had 

higher pull-out loads than the bars with no development length. The no development length condition 

was achieved by covering the bars with PVC pipes, thus not allowing the bar to bond with concrete. This 

causes only the head being able to resist the pull-out force. While the edge distance was found to be a 

factor in controlling the size of the failure cone, it was also found that bars closer to the edge had 

relatively smaller pull-out load capacity. Wright and McCabe (1997) performed similar work as DeVries  

on headed bars.(39) They conducted extensive research on the effect of anchorage length and transverse 

reinforcement on the behavior of headed bars. 

Thompson, et al. (2006) tested 27 lap-splice specimens with headed bars.(40) A typical specimen is shown 

in Figure 6. As depicted in Figure 7, it was found that internal cracks always tend to propagate from the 

head of one bar towards the opposing bar at an angle of 55 degrees measured from the bar axis. On the 

other end, a well-defined, concrete wedge forms at the head of the opposing bar.  

 
Figure 5. Concrete failure modes.(38) 

 

(a) Pull-out cone failure                        (b) Side blowout failure 



 
Chapter 2. Literature Review 

15 
 

 

Figure 6. Typical lap-splice specimen used by Thompson et al., 2006.(40) 
 

 
Figure 7. Mechanism of force transfer between opposing lapped bars (Thompson et al., 2006).(40) 

 

The experimental work on headed bars found in the literature can be used to compare general behavior 

with the laboratory samples used in this study. And, they can be used to calibrate the Finite Element (FE) 

model. 

Numerical Modeling 

Numerical modeling of reinforcing bar bond slip has been carried out by several researchers. A brief 

summary is given here. For more details, refer to thesis by Rashique, U. (2018).(30)   

Ngo and Scordelis (1967) proposed a simple two-dimensional bond element. Two orthogonal spring 

elements were used to connect the adjacent steel and concrete node pair.(41) The springs had no physical 

dimension which means the adjacent steel and concrete nodes could occupy the same location.  

Concrete 
wedge 

(a) Strut model for lap splices                      (b) A tested specimen 
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Dinges (1983) proposed a generalized contact element with two double nodes and a linear shape 

function.(42) Keuser & Mehlhorn (1988) analyzed the aforementioned bond-link element (Ngo & 

Scordelis) and contact element (Dinges) behavior with five shape functions.(43) They concluded that 

the accuracy of the results can be increased by using higher order polynomials for displacement 

functions. 

From the experiments on axially loaded cylinders, Doerr (1980) derived a bond stress-slip relationship 

where the bond shear stress was related to concrete tensile strength and bar slip.(44) Keuser & Mehlhorn 

(1988), used the equations proposed by Doerr (1980) and Martin (1973), and compared them to the 

results obtained by FE analysis using the bond-link element with constant stiffness developed by Ngo 

and Scordelis (1967).(43, 44, 45, 41)  It was concluded that bond elements with constant shape function and 

linear elastic material properties cannot model the steel-concrete bond-slip behavior with sufficient 

accuracy. 

A large portion of the bond-slip nonlinearity arises from the primary and secondary cracks. As a 

consequence, research was carried out to develop Linear Elastic Fracture Mechanics (LEFM) model for 

steel-concrete bond. Ingraffea, et al. (1984) studied the efficacy of LEFM models in the FE analysis of 

steel-concrete bond.(46) While LEFM works well for metals and many rocks, it was considered not 

accurate in case of concrete.  

Another bond model using plasticity theory incorporating the effects of mechanical interaction and 

secondary cracks was developed by Cox and Hermann (1998).(47) This was a two-dimensional 

axisymmetric model in “bar scale”, i.e., the concrete and the bar were modeled separately, but for 

simplification, the ribs in the bar were not modeled. While Ingraffea et al. (1984) considered the 

effect of cracking on horizontal displacement of the bar, Cox and Hermann (1998) considered the 

relative movement of concrete in bond zone in both the horizontal direction and the normal 

direction (bond zone dilation). Figure 8 depicts an idealized deformation of the bond zone. 

 
Figure 8. Deformation of bond zone: (a) actual, (b) idealized model (Cox and Hermann, 1998).(47) 

 

In a recent study, a bond-slip relationship was developed by Hong et al. (2008) in which the bond 

stress (i.e., shear stress per unit interface area) is expressed as a function of concrete compressive 

(a)                                                          (b)  
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strength, bar diameter, and the amount of slip. This equation was developed using a set of 

experimental results.(48) 

Although, many researchers have developed numerical models to simulate the bond-slip behavior 

of steel and concrete, no single model was able to incorporate all the factors affecting bond-slip 

response. Thus, the FE modeling of the laboratory specimens in this study remains a challenging 

task. Past experience has shown that if there are too many nonlinearities in a FE model (material, 

contact elements, large deformation, etc.), the models will have more difficulty with solution 

convergence. Therefore, it is important to use a simple bond-slip model. 

Summary 

The literature review examined numerous studies and offered valuable insight into the current study. 

Based on the literature reviewed, the following key points are found: 

1. High performance fiber reinforced concrete has been used as an alternate material to UHPC in 

connecting certain bridge precast components by the Virginia Department of Transportation.  

2. ASTM C-157 is an adequate method for determining the drying shrinkage of concrete 

specimens.  

3. There are several test methods in determining bond strength. The flexural beam test, ASTM C-

78, was chosen for this study because it simulates loading in the field.  

4. Based on the performance and ease of application, the optimum surface preparation is the 

exposed aggregate finish. 

5. Saturated surface dry moisture condition at the interface is suggested to provide the best bond 

performance.  

6. Bonding agents are primarily used for applications involving repair or overlays. 

7. Polypropylene fibers proved to be a suitable option based on performance, availability, and cost. 

8. The experimental work on headed bars can be used for comparison with experimental work in 

this study and to calibrate the FE models.   

9. A simple model of bond-slip is preferable in the FE modeling, especially in the context of this 

research. 
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Chapter 3 

Experimental Work Methodology and Data Acquisition  

Introduction 

The optimum high-early strength concrete mix was chosen based on compressive strength, splitting 

tensile strength, and shrinkage. Interface bond strength tests were conducted using segments of precast 

and optimum material. It should be noted that ITD is currently using high-early strength concrete with 

Polypropylene fibers in certain parts of bridges in Idaho; therefore, the materials considered in this 

study are readily available in Idaho.  

Mix Design  

This project consisted of designing a control mix and five alternate mixes. The control mix was 

determined by using the ACI Absolute Volume Method. Cement for this mix was Type II. The cement was 

supplied by Ash Grove Cement Company. Fly ash Type F was used as a cement substitute (secondary 

cementitious material).  

To obtain high-early strength concrete, MasterSet AC 534 accelerating admixture was included. Air 

entrainer MasterAir AE 200 was used to control air content. High-range Water Reducer (HRWR) 

MasterGlenium 1466 was used. Other parameters to create the remaining mixes were Shrinkage 

Reducing Admixture (SRA), Bonding Admixture (BA), and Polypropylene fibers. Bonding admixture was 

AKKRO-7T and was supplied by Euclid Chemical Company. Shrinkage reducing admixture was MasterLife 

SRA 035. Polypropylene fibers were Fibermesh 150. Table 2 provides a list of the products used in the 

concrete mixes. Material specifications for constituents can be found in Appendix A of the thesis by 

Casanova, M. (2018).(49)   

Table 2. Product list. 
 

 Product Company 

Accelerating admixture MasterSet AC 534 BASF 

Air entraining admixture MaterAir AE 200 BASF 

High-range water-reducing admixture MasterGlenium 1466 BASF 

Shrinkage reducing admixture MasterLife 035 BASF 

Bonding admixture AKKRO-7T Euclid 

Bonding agent Tammsweld Euclid 

Polypropylene Fiber Fibermesh 150 Fibermesh 

 

Table 3 shows the mix design variables which were developed in consultation with the ITD Technical 

Advisory Committee. Trial batches mixed in the laboratory were also helpful in determining admixture 

and fiber dosages. During trial batches, workability significantly decreased with a fiber dosage of 3.0 
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lb/yd3. The trial batches using a fiber dosage of 1.5 lb/yd3 proved more workable. To avoid workability 

issues in the later mixes, fiber dosages of 0.75 lb/yd3 and 1.5 lb/yd3 were used. Accelerator dosage of 70 

fl oz/cwt was determined from trial batches for the control mix to obtain the minimum 1-day 

compressive strength of 3,000 psi, as specified by ITD. This dosage was used for all mixes. Air entrainer 

was adjusted for each mix to meet the air content requirement. Mixes with bonding admixture (BA) did 

not require additional air entrainment. Recommended manufacturer dosages for SRA and BA were used. 

SRA dosage used was 1 gal/yd3. For BA the recommended was to mix one part AKKRO-7T with three 

parts water (1:3). All admixture dosages were verified by the local ready mix company’s owner who has 

served as a consultant for ISU student projects, and provided many of the materials for this research 

project. The control mix was developed following American Concrete Institute (ACI) absolute volume 

method. The mix design also followed the specifications required by ITD’s Standard Specifications for 

Highway Construction.(50) Refer to Appendix B of the thesis by Casanova, M. (2018) for the mix design 

procedure and the appropriate ITD design parameters. The precast concrete mix design used for this 

research was supplied by a local precast producer.(49) 

Table 3. Mix design variables. 
 

Mix Fibers SRA BA 

A (Control) - - - 

B 0.75 lb/yd3 - - 

C 1.5 lb/yd3 - - 

D 1.5 lb/yd3  - 

E 0.75 lb/yd3   

F -   

                                  Note: Fibers are polypropylene fibers; SRA = shrinkage reducing admixture;  
                                             BA = bonding admixture  

 

A great deal of time was spent conducting trial batches and tests to obtain a control mix with 

specifications required by ITD (i.e., adjusting the admixture dosages to obtain the required one-day 

compressive strength, mix air content and slump). The control mix proportions are shown in Table 4. 

Water adjustments to the mix design were made to account for the moisture content and absorptions of 

the coarse and fine aggregates. Water adjustments for admixtures were also considered as per the 

recommendation of ITD Material’s Engineer. Accelerator admixture is composed of 46.5% liquids, so the 

equivalent amount of water was taken out. Equivalent amounts of water were taken out with the 

addition of SRA or BA. The contributions of air entraining and water reducing admixtures to the adjusted 

water were minimal compared to the others and were ignored. The first water value shown in Table 4 is 

the required mix water adjusted for the moisture and absorption of the aggregates. The second value 

“Water used” is the amount of water adjusted for aggregates and admixtures. This value was the actual 

amount of mix water used during batching. Table 5 shows the summary of the admixture dosages used 

for each mix. More details about water adjustments and all the mix design proportions can be found in 

Appendix B of the thesis by Casanova, M. (2018).(49)   
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Table 4. Control mix (Mix A) proportions. 
 

Water to cement ratio (w/c) 0.36  

Fine aggregate   

     Moisture content 5.7 % 

     Absorption 2.1 % 

Coarse aggregate   

     Moisture content 1.9 % 

     Absorption 1.3 % 
   

Water (adjusted for moisture contents and 
absorption of fine and coarse aggregates) 176 lb/yd3 

Water used (adjusted for admixtures) 156 lb/yd3 

Cement 528 lb/yd3 

Fly ash 132 lb/yd3 

Fine aggregate 1564 lb/yd3 

Coarse aggregate 1454 lb/yd3 
   

Admixture Dosage  

Accelerator (AC) 70 fl oz/cwt 

Air Entrainer (AE) 7 fl oz/cwt 

Superplasticizer (HRWR) 8 fl oz/cwt 

Shrinkage Reducing Admixture (SRA) 0 gal/yd3 

Bonding Admixture (BA) 0  

Fibers 0 lb/yd3 
                              Note: cwt = hundred pound weight of cementitious material 

Table 5. Mix design admixture dosage summary. 
 

Admixture Units A B C D E F 

AC fl oz/cwt 70 70 70 70 70 70 

AE fl oz/cwt 7 10 10 10 - - 

HRWR fl oz/cwt 8 8 8 8 5 6 

SRA gal/yd3 - - - 1 1 1 

BA - - - - - 1:3 1:3 

Fibers lb/yd3 - 0.75 1.5 1.5 0.75 - 

                  Note: cwt = hundred pound weight of cementitious material 

Aggregate Analysis 

The aggregate for this project was supplied by Pocatello Ready Mix. Sampling of aggregates was 

conducted following ASTM D75, Standard Practice for Sampling Aggregates (ASTM 2014a). Aggregate 

collected from the stockpile were kept sealed in five gallon buckets to preserve their moisture content 

during storage. Using ASTM C566 (ASTM 2013d), the moisture content of aggregates was obtained. 
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Aggregate absorption was determined by following ASTM C127 and ASTM C128 for coarse and fine 

aggregates, respectively.(51, 52) Sieve analysis was also conducted according to ASTM C136, Standard Test 

Method for Sieve Analysis of Fine and Coarse Aggregates.(53) Moisture and absorption values were used 

to determine water adjustments for the mix design. Aggregate gradations met the requirements as 

specified by the Idaho Transportation Department.(50) Aggregate analysis data can be found in Appendix 

C of the thesis by Casanova, M. (2018).(49)   

Sample Casting 

Concrete samples were cast in accordance with ASTM C192, Standard Practice for Making and Curing 

Concrete Test Specimens in the Laboratory.(54) Before casting samples slump and air content tests were 

performed. Slump and air content were determined in accordance with ASTM C143 and ASTM C231, 

respectively. Capping of concrete cylinders followed ASTM C617, Standard Practice for Capping 

Cylindrical Concrete Specimens.(55) Concrete batching was mainly done in the laboratory with a barrel 

mixer. However, a mixing truck was used when a large quantity of precast concrete was needed for 

headed bar pull-out and flexural beam specimens. Appropriate laboratory procedures for mixing 

concrete were followed.  

Cylinder and Shrinkage Prism Casting 

Cylinders were cast for determining compressive and splitting tensile strengths. Samples were 4-in. 

diameter by 8-in. tall and cast using standard plastic molds. Length change prisms were cast in molds 

with dimensions of 3 in. x 3 in. x 11.25 in. and included anchor holes in the ends to secure gage studs. 

Gage studs were screwed into the ends of the mold to be cast into the specimens. Concrete molds are 

shown in Figure 9.  

After 24 hours the samples were removed from their molds and placed in a water bath to cure. Due to 

the large quantity of samples to be tested, a water tank was constructed for curing, as shown in Figure 

10. Concrete cylinders and shrinkage prisms were moist cured in lime-saturated water for 28 days, after 

which the samples were removed from the water and prepared for testing. 

Interface Beam Casting 

To determine the interface bond strength between precast concrete and HES concrete, a modified 

ASTM C78 developed by De la Varga, Haber, and Graybeal (2016) was used.(1) The modified standard 

uses a 6 in. x 6 in. x 21 in. composite loaded in third-point bending. See Figure 11. Specimens are made 

by first casting the precast segments. The precast interface was prepared next, followed by the pouring 

of the connection concrete. Exposed aggregate surface finish was the chosen method for precast 

concrete interface surface preparation. Exposing the aggregate was accomplished by the use of a 

concrete surface retarder, “Formula F” manufactured by Euclid Chemical Company. This product delays 

the setting of concrete so that the surface can be washed or scrubbed away to reveal the underlying 

coarse aggregate. Based on the literature review and recommendations by ITD, Saturated Surface Dry 

(SSD) was used for the precast interface surface.  
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Figure 9. Concrete molds. 

 

 

Figure 10. Water tank for moist curing of samples. 
 

 
 

Figure 11.  Interface bond specimen. 
 

The wood mold seen in Figure 12 shows a divider in the middle that was painted with a layer of concrete 

surface retarder. The molds were lubricated with WD-40 to prevent concrete from sticking to the wood 

and promote easy mold removal, except where the concrete surface retarder was applied. The molds 

were filled in two lifts of equal volume and rodded 32 times for each lift. After each lift the concrete was 

consolidated by tapping the sides of the mold 10 to 15 times with a mallet. Once the second lift was 

(a) Cylinder mold (b) Length change prism mold 

Gage Stud 

 HES Concrete 
(Closure Pour)   

Precast 
Concrete 

Interface 

Closure Precast 

𝐿/3 𝐿/3 𝐿/3 
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consolidated, the surface was troweled to achieve a smooth finish. The samples were covered with 

plastic to prevent water from evaporating and were allowed to cure for 24 hours. After curing, the 

precast segments were removed from the molds and the surface that was in contact with the concrete 

retarder was washed with water using a garden hose sprayer to produce an Exposed Aggregate (EA) 

finish as shown in Figure 13. 

 
Figure 12. Interface bond test specimen mold. 

 

 

Figure 13. Exposed aggregate surface preparation. 
 

Wet burlap was placed around the precast concrete segments and then covered in plastic. The burlap 

was monitored and kept moist with a sprayer throughout the curing process. The precast sections were 

removed at 28 days. After removal, these sections were placed back into the molds. The molds were 

lubricated with WD-40 oil spray. The EA surface on the precast portion was sprayed with water to create 

a SSD moisture condition. Casting the HES concrete followed the same steps as the precast concrete and 

a similar curing method was used after specimens were removed from the molds.  A second set of beam 

specimens were used to determine the effect of applying bonding agent at the interface. Casting and 

curing procedures were the same as the previous set except for the precast interface surface 

preparation. The precast sections were removed from curing one day before casting the HES closure 

concrete. The EA surfaces were dried with a heat gun then the Bonding Agent (BG), Tammsweld, was 

applied with a paint brush and allowed to dry before being placed back in the molds. For casting the HES 

(a) Interface 
beam mold 

(b) Concrete 
retarder on form 

(c) Precast section poured 
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concrete, water was not sprayed over the bonding agent. Refer to Appendix M of the thesis by 

Casanova, M. (2018) for pictures of the casting process.(49) 

Headed Bar Pull-out Specimen Casting 

Headed bar pull-out tests were used to simulate the lower portion of a closure pour deck connection 

between Deck Bulb-T girders as shown in Figure 14. The specimen consists of precast concrete sections 

and the closure concrete reinforced with three headed rebars. The sequence of specimen construction 

is shown in Figure 15. 

 
Figure 14. Headed bar pull-out specimen schematic. 

 

Precast segments of the headed bar pull-out samples were prepared similar to the interface bond 

samples with the exposed aggregate surface finish. Molds were constructed from plywood. Holes were 

drilled for placing the rebar. Concrete surface retarder was applied to the inside face of the two precast 

segments. Strain gages were installed on rebar before casting concrete. Rebars were set in the molds so 

that the strain gages were oriented so they were facing up and down. Precast sections were poured in 

two lifts and rodded 25 times for each lift. After the precast concrete cured, the closure concrete was 

poured. Steel plates and threaded rods were welded to the ends of the sample. These were used to 

attach the specimen to the United tensile testing machine. Prior to testing, the front faces of the 

specimens were painted white and 1 in. x 1 in. grid lines were marked with a pencil. The paint helped 

identify cracks. Refer to Appendix M of the thesis by Casanova, M. (2018) for details regarding the 

casting and fabrication of the headed bar pull-out specimens.(49) Figure 15 shows the sequence of 

specimen fabrication; beginning with the rebar placement, then casting the precast concrete, and finally 

casting the closure concrete. The fabrication can be seen in Figure 16. The photos show the rebar being 

LOAD 

LOAD 

Deck Bulb-T Girder 

Closure Pour 
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placed in the wood mold, the exposed aggregate surface finish of the precast interface, and the fully 

cast specimen. 

 
Figure 15. Headed bar pull-out specimen fabrication sequence. 

 

 
Figure 16. Headed bar pull-out specimen fabrication. 

 

(a) Rebars 
(b) Precast concrete 

segments cast 
(c) Closure pour 

concrete cast 

(a) Mold (b) Precast segments cast (c) Exposed aggregate finish 

(d) Fully cast specimen 
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Flexural Beam Casting 

Large beam samples were used to determine the flexural strength under three-point and four-point 

bending. Beams were constructed by connecting two separate precast segments with the closure 

concrete. The overall dimensions of the beam were 78 in. x 12 in. x 8 in. and contained reinforcement as 

seen in Figure 17. Casting procedure for large beam specimens was similar to headed bar pull-out 

specimens. Strain gages were installed on rebar before casting concrete and were oriented so that strain 

gages were facing up and down. The sequence of casting is shown in Figure 18. Rebars were first setup 

with epoxy coated rebars at the top and headed rebars at the bottom. Next, the precast concrete was 

poured. The last step was to connect the two precast segments by pouring the closure concrete.  

Due to the large volume of precast concrete needed, a mixing truck was used for the larger precast 

segments. Precast concrete for headed bar pull-out and flexural beam specimens were cast at the same 

time. The concrete surface retarder was applied to the molds. Rebars were placed inside the molds and 

set the correct distance. A group of ISU student volunteers helped pour all the specimens within an 

hour. Figure 19 shows pictures from the “Pour Day” which the volunteers were involved with. After 

casting the concrete, the rebars were checked to ensure they were correctly positioned. Eye bolts were 

embedded in samples to be used for lifting. Precast concrete cylinders to be used for material property 

tests were cast at the same time. Refer to Appendix M of the thesis by Casanova, M. (2018) for more 

photos of specimen fabrication.(49) 

 

Figure 17. Large beam schematic. 
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Figure 18. Large beam specimen fabrication sequence. 
 

(b) Precast concrete segments cast 

(c) Closure concrete cast 
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6” 
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Figure 19. Pictures from the “Pour Day” (casting of precast concrete segments). 

Testing  

This section presents the various tests that were carried out as part of the experimental work for this 

project. These tests include concrete compressive strength, splitting tensile, length change, modulus of 

elasticity, and Poisson’s ratio which were used to determine concrete material properties. Additional 

tests include interface bond, headed bar pull-out, and flexural beam. These tests are described in the 

following sections. 

Compression Test 

Concrete compressive strength tests were conducted according to ASTM C39, Standard Test Method for 

Compressive Strength of Cylindrical Concrete Specimens.(56) Specimens were capped according to ASTM 

C617 with a sulfur based compound to provide uniform load distribution.(55) Cylinders were used to 

determine the 1-day and the 28-day compressive strengths. Compression tests were conducted using 

the Gilson Compression Testing Machine shown in Figure 20(a). A loading rate of approximately 440 

(a) Pouring large beam 
precast segments 

(b) Pouring rebar pull-out 
specimen precast segments 

(c) Rodding large beam (d) Embedding eye bolt anchors 



Effectiveness of High-Early Strength Concrete Class 50AF with Polypropylene Fibers as a Cost-Effective Alternative for Field-Cast 
Connections of Precast Elements in Accelerated Bridge Construction 

30 
 

lb/sec was applied until failure. The peak load was recorded from the digital readout of the machine. 

Figure 20(b) shows a compressive specimen prior to testing.  

 
Figure 20. Compression testing setup. 

Splitting Tensile Test 

Splitting tensile strength tests followed ASTM C496, Standard Test Method for Splitting Tensile Strength 

of Cylindrical Concrete Specimens.(16) Either 4 in. x 8 in. or 6 in. x 12 in. concrete cylinders are used for 

this test. Wood strips were used to provide uniform loading along the length of the cylinder. A loading 

rate of approximately 126 lb/sec was applied until failure. In this project 4 in. x 8 in. cylinders were used 

as shown in Figure 21. 

  

Figure 21. Splitting tensile testing setup. 
 

(a) Gilson testing machnie  (b) Compression specimen 
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Length Change Test 

Length change testing followed ASTM C157, Standard Test Method for Length Change of Hardened 

Hydraulic-Cement Mortar and Concrete.(9) This test method uses 3 in. x 3 in. x 11.25 in. concrete prisms 

with gage studs embedded at the ends to measure changes in length over time. An initial measurement 

was taken after removing samples from the molds 24 hours after casting. Samples were then moist 

cured. At 28 days, samples were removed and another measurement was taken. Samples were then 

placed on a rack at least one inch apart to allow for uniform drying as shown in Figure 22. Specimens 

continued to dry during which time measurements were periodically recorded. Measurements were 

taken after curing at 4, 7, 14, 28, 42, and 56 days, and then every 4 weeks for a total of 336 days 

following curing. A comparator, shown in Figure 23, was used to measure the difference in length 

between the reference bar and the specimen. A reference bar is first placed in the comparator and the 

digital indicator is zeroed. A specimen is then placed into the comparator and the measurement is 

recorded. The change in length is then calculated according to the ASTM procedure. 

 

Figure 22. Shrinkage specimens air drying. 

 
Figure 23. Length change test. 

 

 

(a) Length comparator                 (b) Measuring sample 
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Modulus of Elasticity and Poisson’s Ratio Tests 

Modulus of elasticity and Poisson’s ratio tests were conducted on cylinders that were made while 

casting the precast and closure concretes for the headed bar pull-out and large beam specimens. Prior 

to conducting compressive strength tests, concrete cylinders were first used to determine modulus of 

elasticity and Poisson’s ratio according to ASTM C469.(57) This test uses a compressometer/extensometer 

shown in Figure 24(a) to measure strain of a concrete specimen subjected to compression loading. The 

device in use is shown in Figure 24(b). Refer to Appendix K of the thesis by Casanova, M. (2018) for the 

detailed testing procedure.(49) 

 
Figure 24. Compressometer/extensometer. 

Interface Bond Test 

Similar bond tests performed by De la Varga et al. (2016) and Haber and Graybeal (2016) were used for 

this study because this test best replicates the stresses at the interface in the field.(1, 6) Interface bond 

samples were tested in third-point loading in accordance with ASTM C78. Figure 25 shows the Gilson 

Testing Machine and flexural beam testing apparatus that were used to break the samples. A constant 

loading rate of 30 lb/sec was applied until beam failure occurred. After testing concluded, the maximum 

load was recorded and cross-sectional measurements were taken to calculate bond strength. 

Headed Bar Pull-out Test 

Samples were tested in tension using the United Testing Machine shown in Figure 26. Monitors were 

setup next to the test specimen so that a high resolution camera could view the specimen and the 

measured values. Specimens were loaded at a constant rate of 0.01 in./min until failure occurred. Load, 

displacement, and strain values were recorded with each test. Six headed bar pull-out tests were 

conducted. The instrumentation used for this test will be discussed in Chapter 4. 

 

(a)                                                  (b)  
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Figure 25. Interface bond test setup. 
 

 
Figure 26. Headed bar pull-out test setup. 

Flexural Beam Test 

A total of six beams were cast. Three beams were tested in three-point bending and three were tested 

in four-point bending. Beams were tested in the Tinius Olsen Testing Machine shown in Figure 27. In 

these tests the closure pour concrete age was 28 days. The span length for all beams was 72 inches.  

Figure 27 shows the diagram of the flexural beam test setup. Before loading the connecting bolts for the 

steel beam to the steel column supports were removed. The Tinius Olsen contains a hydraulic pump 

underneath the loading platform so when the pump is activated, the loading platform is lifted up toward 

(a) Test setup (b) Sample 

StrainSmart DAQ 

United Display 

DAQ Display 
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the upper plate. This means the steel beam is unsupported at the ends and is only supported by the 

loading platform. 

 
Figure 27. Beam test setup.  Note before the test, the supports are removed. 

 

Three-point flexural testing consisted of applying the load to a one-inch thick plate at the center of the 

beam. The plate was 10 in. x 20 in., which simulates a truck tire footprint as prescribed by American 

Association of State Highway and Transportation Officials (AASHTO). Figure 28 shows the setup for 

three-point load testing. The steel plate, load cell, and rubber pad were setup as shown in Figure 29.   

Four-point loading in Figure 30 shows a spreader beam (HSS 8 x 4 x 3/8) distributing the load. The load 

cell setup for four-point bending is seen in Figure 31. Loading for all beam tests were applied at a rate of 

0.1 in./min until failure. Instrumentation of the beam specimens will be discussed in Chapter 4. 

 
Figure 28. Three-point flexural test diagram. 
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Support 
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Upper plate 



 
Chapter 3. Experimental Work Methodology and Data Acquisition 

35 
 

 
Figure 29. Three-point loading setup. 

 

 
Figure 30. Four-point flexural test diagram. 

 

 
Figure 31. Four-point loading setup. 
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Instrumentation  

The following section describes the instrumentation used to measure larger specimen behavior during 

testing. Instrumentation used section strain gages, linear variable differential transformers (LVDT), and 

load cells. Test data was collected using a Vishay Strain Smart Data Acquisition System. The data 

acquisition system (DAQ) uses cards for different measuring devices. This project utilized strain gage 

cards and LVDT cards. More on instrumentation used in this project are provided in thesis by Casanova, 

M. (2018) and its Appendix L.(49) 

Strain Gages  

The installation of rebar strain gages followed manufacturer procedures for steel installation as outlined 

in Micro-Measurements Instruction Bulletin B-137, strain gage installation for metallic structures. 

Concrete strain gages were also used for this project. The installation for concrete strain gages followed 

procedure as outlined in Micro-Measurements Tech Tip TT-611, strain gage installation for concrete 

structures.  Figure 32 shows the steel and concrete strain gage installation.  

 
Figure 32. Headed steel bar and concrete strain gage installation. 

 

Linear Variable Differential Transformer (LVDT) 

Displacements were measured using a linear variable differential transformer or LVDT shown in Figure 

33(a). Mounting blocks for the LVDTs were fabricated using 2 in. x 3 in. lumber to securely hold LVDTs in 

(a) Headed bar strain gage 
installation 

(b) Strain gage next to steel 
bar’s head 

(e) Gages in protective coating 
and wrapped in aluminum foil 

(c) Steel strain gage on headed 
bar pull-out specimen 

(d) Concrete strain gages on 
headed bar pull-out specimens 

(f) Concrete strain gages on 
bottom of a beam specimen 
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place. A hole was drilled through the block and a slit was cut along the side as shown in Figure 33(b). A 

screw was used to clamp the LVDT to the block. No slipping occurred once the LVDT was clamped.  

    
Figure 33. LVDT and mounting block. 

Load Cells 

Load cells were used to measure the applied force subjected to the specimens. Two load cells were 

needed; one for tension and another for compression. A tensile load cell was fabricated to be 

incorporated into the pull-out tests. The compression load cell was used for the large beam tests. Figure 

34 shows the load cells used this project.  More details on load the cells and the calibration process are 

provided in the thesis by Casanova, M. (2018).(49) 

 
Figure 34. Tension and compression load cells 

Specimen Instrumentation 

Data collected from pull-out tests included strain, displacement, and force. Strain gages were included 

on the center rebar. Concrete strain gages were placed at three locations: in the middle of the closure 

concrete and on either side of the top interface. Gages were installed on the front and back of the 

(a) LVDT (a) Mounting block 

(a) Tension load cell used in 
headed bar pull-out tests 

(b) Compression load cell 
used for beam tests 
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samples. A pair of strain gages was installed at each location on the concrete and on the headed bar, on 

opposite sides, to remove any local bending effects when measuring the axial strain. The concrete strain 

gages were all surface mounted. The larger concrete strain gages give the average strain over a 2-inch 

gage length. Figures 35 and 36 show the pull-out specimen and the locations of the strain gages. As 

shown in Figure 36, LVDTs were attached to the left and right side to measure the expansion of the 

interface crack. Mounting blocks were attached to the samples using a two-part epoxy. Supports made 

from L-brackets were also attached to the sample for the extension rods as seen in Figure 32(b). 

Threaded couplers were used to attach the ends of the pull-out specimen and tensile load cell to the 

United Testing Machine.  

 
Figure 35. Pull-out Sample Instrumentation. 

 

 
Figure 36. (a) Pull-out specimen and (b) LVDT setup. 

 

(a)  (b)  
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Beam tests used similar instrumentation. Two strain gages were attached to each of the two central 

headed rebars. Two strain gages were also attached to the bottom face of the closure concrete section. 

Figure 37(a) shows the locations of all six strain gages on the beams. LVDTs were used to measure the 

mid-span deflection of the beam. The LVDT wood mounting blocks were attached to a piece of plywood 

that was clamped to the frame of the Tinius Olsen machine, as shown in Figure 37(b). Steel plates were 

attached to the top of the beam in the center which extended to the outside of the frame.  

 

Figure 37. Large beam instrumentation. 
 

(a) Strain gage locations 

(b) LVDT mount and extension bracket 
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Data Analysis      

The following section describes how the test data was processed using the Strain Smart software and 

the System 6000 DAQ. After importing the data into Excel, the data was analyzed. Results were 

produced from this Excel data analysis. The results are presented in Chapter 4. 

Strain Smart 

The Strain Smart software can have a scan rate ranging from 100-10,000 samples per second. The 

sample rate is the number of measurements that will be collected per second. The System 6000 is 

designed for dynamic measurements and use higher sampling rates. Loading procedures for this project 

only considered static loading conditions. Therefore, the sample rate was kept low. Using a slower 

setting decreases the file size. The sample rate applies to each channel, meaning each channel with a 

measuring device will be sampled at the same rate.   

Headed bar pull-out tests took approximately 2.5 minutes and large beam tests took approximately 5 

minutes to complete. Headed bar tests had a total of 12 channels and beam tests had 9 channels. Table 

6 shows the number of instrumentation channels used for each test. 

Table 6. Instrumentation channels used for larger specimen tests. 

Sensor Type  
Headed Bar  

Pull-out 
Large Beam 

Strain gages 

Load cell 2 1 

Rebar 2 4 

Concrete 6 2 

LVDT  2 2 

 Total 12 9 

 

Over 30,000 data points were collected for each channel for the headed bar pull-out tests and 60,000 

data points for beam tests. Data was exported to an Excel file for processing. Precision of load and strain 

data was measured to the nearest microstrain (i.e. 1 × 10-6) and displacements were measured to the 

nearest thousandths of an inch.  

To simplify analysis, the data was reduced in the post-processing phase. A trial and error approach 

showed that taking data points at every ¼ second was sufficient for the experimental tests in this 

project. Reduction in data did not affect outputs, i.e., the maximum or minimum values. After the data 

reduction, headed bar pull-out and beam tests had approximately 600 and 1,200 data points for each 

channel, respectively.  
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Calculating the Headed Bar Stress Next to the Head and Force Taken by the Head 

As shown in Figure 38, strain gages were placed next to the head of the headed bars for the upper bar in 

the pull-out specimens and the two bottom headed bars in the beam specimens. The center of the steel 

bar strain gages was 1 in. away from the head. Therefore, the stress at these locations or the estimated 

force taken by the head can be determined.   

 
Figure 38. Bar stress from strain gages and force in the head of the headed bar. 

 

The bar stress and force resisted by the head of the headed bar was calculated using the equation in 

Figure 39.  

 𝜎𝑏𝑎𝑟 =  𝐸𝑠 𝜀𝑎𝑣𝑔.   

𝐹ℎ𝑒𝑎𝑑 =  𝜎𝑏𝑎𝑟 𝐴𝑏𝑎𝑟 =  𝐸𝑠 𝜀𝑎𝑣𝑔. 𝐴𝑏𝑎𝑟  

Figure 39. Equations for calculating stress in the bar next to the head and force in the head. 
 

Where, 

𝐸𝑠𝑡𝑒𝑒𝑙   = Modulus of elasticity, modulus of steel = 29 x106 (psi), 

𝜎𝑏𝑎𝑟 = Normal stress in the bar next to the head (psi), 

𝜀𝑎𝑣𝑔. = Average strain of the two strain gages next to the head (με, 10-6), 

𝐹ℎ𝑒𝑎𝑑 = Estimated force in the head (lb), 

𝐴𝑏𝑎𝑟 = Bar cross-sectional area (in.2). 

 

Calculating the Concrete Beam Mid-span Deflection 

As shown in Figure 27, before loading the beam, the connecting bolts for the steel beam-to-column 

supports were removed. The Tinius Olsen contains a hydraulic pump underneath the loading platform so 
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when the pump is activated the platform is lifted up into the upper plate. This means the steel beam is 

unsupported at the ends and it is only supported by the loading platform. LVDT measurements were 

adjusted to account for bending of the steel support beams. Concrete beam and steel beam deflections 

are shown in Figure 40.  

 
Figure 40. Beam deflection diagram. 

 

The measured displacement from the LVDTs is the summation of the deflection of the concrete beam 

and the deflection of the two identical support steel beams.  This is expressed as: 

∆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  =  ∆𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 +  ∆𝑠𝑡𝑒𝑒𝑙  

Or,  

 ∆𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = ∆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∆𝑠𝑡𝑒𝑒𝑙  

 

Figure 41. Equations for calculating concrete beam mid-span deflection. 
 

Where, 

∆𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒= Mid-span concrete beam deflection (in.), 

∆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = Displacement measured from LVDT (in.), 

∆𝑠𝑡𝑒𝑒𝑙 = Deflection of the steel support beams (in.). 

 

Concrete Beam 

Steel Support Beams (2) 

Steel Support Beams (2) 
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The loading condition of the steel support beams in Figure 40 is a simply-supported beam with two 

equal concentrated loads symmetrically placed. From the deflection diagrams in Table 3-23 of the AISC 

Steel Construction Manual the deflection equation was obtained for the corresponding load case.(58) The 

deflection in the steel support was very small in comparison to the concrete beam.  More details of 

calculating the concrete beam mid-span deflection are presented in thesis by Casanova, M. (2018).(49) 
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Chapter 4 

Experimental Results 

Introduction 

This chapter presents the results obtained from laboratory tests. It is divided into six sections: 

compression strength, splitting tensile strength, shrinkage, interface bond strength, headed bar pull-out 

test results, and flexural beam test results. Based on the results obtained from the tests conducted on 

the material properties, namely compression, split tensile, and shrinkage, an optimum mix was 

determined. Using this optimum mix and another alternative mix (as suggested by ITD), interface bond 

strength tests were performed.  This resulted in the best method for preparing the interface between 

the precast concrete and closure pour material. The headed bar pull-out test and the flexural beam test 

determined the behavior of the ITD connection detail with the optimum closure pour material. 

Compression Results 

In order to obtain the compressive strength of a sample, the cross-sectional area was first determined. 

Two diameter measurements were taken perpendicular to each other at mid-height of the specimen. 

After the samples were measured, they were tested according to the methodology in Chapter 3. 

Following testing, the peak load was recorded and used to calculate the compressive strength using the 

equation in Figure 42.  

𝑓𝑐
′ =  

𝑃

𝐴
 

Figure 42. Compressive strength of concrete. 
Where, 

𝑓𝑐
′ = Compressive strength (psi), 

𝑃 = Peak load (lb), 

𝐴 = Cross sectional area (in2). 

Standard deviation and coefficient of variation were also calculated for 28-day compressive strengths 

for each set. Results are shown in Table 7. Figure 43 is a graphical representation of the data provided in 

Table 7. 

The 1-day compressive strength was a design criterion with a minimum value of 3,000 psi, as specified 

by ITD. Mixes E and F were below the minimum at 2,550 psi and 2,723 psi, respectively. As seen in Table 

7, the highest 28-day compressive strength attained was 8,864 psi for Mix D. The coefficient of variation 

for all mix designs were within the 3-7% range. The error bars in Figure 43 represent the standard 

deviation of the mixes considered. The compression result data for all specimens tested are presented in 

Appendix D of the thesis by Casanova, M. (2018).(49)  
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Table 7. Compressive strength of closure pour concrete mixes. 

Mix 

1-day 

compressive 

strength (psi) 

28-day 

compressive 

strength (psi) 

Standard 

deviation, 28-

day (psi) 

Coefficient of 

variation, 28-

day (%) 

A (control) 3,196 7,752 374 4.8 

B 3,442 8,471 281 3.3 

C 3,551 7,860 332 4.2 

D 3,074 8,864 623 7.0 

E 2,550 7,710 260 3.4 

F 2,723 8,161 385 4.7 

 

 
Figure 43. Compressive strength of closure pour concrete mixes. 

 

Tensile Strength Results 

Using a straight-edge, a line was first drawn along the length of the sample. Utilizing a combination 

square, a second line was then drawn across the end connecting it with the first line. Three diameter 

and two length measurements were taken. After the specimens were measured, they were tested 

according to the procedure outlined in Chapter 3. The peak load was recorded and the splitting tensile 

strength was calculated using the equation in Figure 44. 

𝑇 =  
2𝑃

𝜋𝐿𝐷
 

Figure 44. Tensile strength formula. 
Where, 

𝑇 = Splitting tensile strength (psi), 
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𝑃 = Peak load (lb), 

𝐿 = Average length (in.), 

𝐷 = Average diameter (in.). 

 

Figure 45 shows a typical split cylinder test before and after failure. Standard deviation and coefficient 

of variation were also calculated for each set. The results are shown in Table 8 and Figure 46.     

During the progression of the test, a crack develops along the vertical plane of the cylinder. Mixes 

without fibers exhibited sudden failures, whereas mixes containing fibers had more ductility. This was a 

result of the fibers holding the concrete together which is shown in a close-up view in Figure 47 where 

fibers can be seen in the crack.  

As seen in Table 8 the highest splitting tensile strength was 837 psi for Mix D. The addition of 

polypropylene fibers for Mixes B and C showed a decrease in strength compared to the control (Mix A) 

of 133 psi and 34 psi, respectively. All mix designs’ coefficient of variation fell in the 3-10% range. The 

splitting tensile strength data of all mixes are presented in Appendix E of thesis by Casanova, M. 

(2018).(49)  

 
Figure 45. Specimen in splitting tensile test. 

 

Table 8. Splitting tensile strength results. 

Mix 
Average split tensile 

strength (psi) 

Standard  

Deviation (psi) 

Coefficient of 

variation (%) 

A 767 31 4.0 

B 634 64 10.1 

C 733 45 6.2 

D 837 54 6.5 

E 749 36 4.9 

F 765 27 3.5 

 

(a) Before Test                                           (b) After Failure 
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Figure 46. Splitting tensile strength results. 

 

 

Figure 47. Split tensile crack showing the fibers. 

Length Change Results 

Length change measurements followed the procedure outlined in Chapter 3, Length Change Test 

section. For each mix, there were six samples. An initial length measurement, 𝐶𝑅𝐷𝑖𝑛𝑖𝑡𝑎𝑙, was taken after 

removal from the mold at 24 hours.  This was the baseline for determining changes in length according 

to equation in Figure 48. 

∆𝐿𝑥 =  
𝐶𝑅𝐷 − 𝐶𝑅𝐷𝑖𝑛𝑖𝑡𝑎𝑙

𝐺
 

Figure 48. Equation for length change measurements. 
Where, 

∆𝐿𝑥 = Length change of specimen (με), 
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𝐶𝑅𝐷 = Difference between the comparator reading of the specimen and the reference bar 

reading (in.), 

𝐺 = Gage length = 10 in. 

Negative length change values indicate shrinkage and positive values represent swelling. Samples were 

stored on a metal rack spaced at least one inch apart in accordance with ASTM C157 for air storage.(9) 

Average shrinkage curves are shown in Figure 49. Average values for mix design “A” excluded specimen 

A-4 since in that specimen one of the gage studs was set too far into the concrete and readings were not 

possible.  All specimens exhibited swelling, an increase in volume, during moist curing caused by the 

absorption of water. This swelling is shown on the shrinkage graphs indicated by the positive values at 

zero days. Once the specimens were removed from water they began to shrink caused by the loss of 

water. The majority of the samples follow a steady curve but there were some fluctuations either 

increasing or decreasing abruptly, but these variations were acceptable. Data were collected up to 336 

days after removal from moist curing.  

 
Figure 49. Average length change after removal from mold at 24 hours. 

 

The shrinkage curves follow similar trends with the majority of shrinkage, about 70-80% of the long-

term shrinkage, occurring in the first two months. For this study the long-term drying shrinkage is 

considered to be the length change at 336 days. Long-term shrinkage values for each mix are shown in 

Table 9.  As shown in Table 9, the lowest shrinkage value was 522 microstrain for Mix D, a 29% reduction 

from the control. Addition of fibers decreased shrinkage, as seen with Mixes B and C. Use of shrinkage 

reducing admixture (SRA) had a significant effect on decreasing shrinkage. The average shrinkage for 

mixes containing SRA (i.e. Mix D, E, and F) is 535 microstrain compared to the average shrinkage for 

mixes only containing fibers (i.e. Mixes B and C) at 664 microstrain. The difference between Mixes B and 

C was not significant, this is most likely due to the low range of fiber dosages of 0.75 lb/yd3 and1.5 lb/yd3 
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(0.05% and 0.1% by volume), respectively. The length change data and graphs for all mixes are given in 

Appendix F of the thesis by Casanova, M. (2018).(49)  

Table 9. Long term drying shrinkage. 

Sample 
Shrinkage 

(microstrain) 

Percent 
reduction (%) 

A (Control) 736 - 

B 655 11 

C 673 9 

D 522 29 

E 555 25 

F 528 28 

 

Based on the compression, split tensile, and shrinkage results, the optimum mix was determined to be 

Mix D, which contained 1.5 lb/yd3 of fiber and SRA. Shrinkage results between Mix D, E, and F were 

comparable, but Mix D had higher strength values and better workability. 

Interface Bond Results 

As described in Chapter 3, Interface Bond Test section, the optimum mix was used to test interface bond 

strength with precast concrete. As recommended by the ITD Technical Advisory Committee, a set of 

samples with Mix E, which contained 0.75 lb/yd3 of fiber, SRA, and BA, was also tested. The benefit of 

bonding admixture was not determined from the material property tests so the interface bond tests 

would provide the researchers with an indication of the performance. A bonding agent, Tammsweld, 

was applied to half of the samples.  

Prior to testing, marks were drawn on the top and bottom faces to align the specimen with the supports 

of the testing apparatus as shown in Figure 51. Samples were tested by turning them on their side to 

provide flat surfaces for loading. Beams were tested 28 days after casting the closure concrete. The age 

of the precast concrete was approximately 8 weeks at the time of testing. Once the samples were 

marked, they were tested following the methodology outlined in Chapter 3, Interface Bond Test. Once 

the test concluded, the break type and peak load were recorded. Three depth and three width 

measurements were taken at the plane of failure. Measurements were averaged to calculate bond 

strength using equation in Figure 50.  

𝑅 =  
𝑃𝐿

𝑏𝑑2
 

Figure 50. Equation for calculating modulus of rupture. 
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Where, 

𝑅 = Modulus of rupture or bond strength (psi), 

𝑃 = Maximum load indicated by testing machine (lb), 

𝐿 = Span length = 18 in., 

𝑏 = Average width (in.), 

𝑑 = Average depth (in.).  

 

 
Figure 51. Interface bond strength test setup. 

 

All interface beam specimens failed at the interface between the precast concrete and the closure pour 

concrete. Figure 52 shows the failure at the interface that was typical for all samples. During testing, two 

distinct failure behaviors were observed. The first was a sudden failure of the beam after the maximum 

load was attained, this was seen for samples without bonding agent. The second failure type was more 

ductile with samples reaching their peak load then undergoing more deflection before ultimate failure. 

Bonding agent caused this behavior. The majority of aggregates debonded while only a small portion of 

aggregates fractured. Mix D samples without bonding agent had 11% of aggregates fracture and about 

7% of aggregates fractured in Mix E samples without bonding agent. There was no significant difference 

in the percent of aggregates that fractured between a mix prepared without bonding agent and the 

same mix prepared with bonding agent. Figure 53 shows the failure plane of specimen D-2 (an interface 

bond specimen with Mix D for closure pour segment and with bonding agent).  

(a) Beam specimen 

(b) Alignment marks for support and loading locations 
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Figure 52. Interface bond test sample D-4 without bonding agent. 

 
Figure 53. Interface bond failure of specimen D-2 with bonding agent. 

 

The fractured aggregate in Figure 53 was determined by identifying similar aggregates in both failure 

planes. Residue of bonding agent was seen on both interface surfaces, but the precast interface had 

more because the bonding agent was applied to the precast portion.  

Average bond strength results are shown in Table 10. Standard deviation and coefficient of variation 

have also been calculated for each set. Figure 54 is a graphical representation of the data provided in 

Table 10. The error bars in Figure 54 represent the standard deviation of the mixes considered. 

Closure concrete Precast concrete 

Fractured aggregate 

Bonding agent 
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Table 10. Interface bond strength summary. 

Mix 
Average  

strength (psi) 
Standard  

deviation (psi) 
Coefficient of 
Variation, % 

Difference w/  
and w/o BG 

D 
w/o BG 612 78 12.8  

w/ BG 436 32 7.5 176 

E 
w/o BG 561 57 10.1  

w/ BG 386 9 2.2 175 

Note: BG = bonding agent. 

 
                Note: BG = bonding agent. 

Figure 54. Average interface bond strength with and without bonding agent. 
 

Bonding agent had an adverse effect on bond strength, resulting in a 29% and 31% reduction in strength 

for specimens prepared with Mix D and Mix E, respectively. Mix E without bonding agent had a lower 

strength by 51 psi (8% difference) than Mix D without bonding agent. In addition, Mix D, with no 

bonding agent, achieved the highest bond strength of 612 psi. Standard deviations differed by 

approximately 47 psi for mixes with and without bonding agent.  

Based on these results, Mix D prepared with a saturated surface dry interface moisture condition, 

without bonding agent, was selected for use for the remaining headed bar pull-out and flexural beam 

tests. Pull-out results are discussed in the next section. More details on the interface bond results are 

given in Appendix H of the thesis by Casanova, M. (2018).(49)  

Headed Bar Pull-out Tests 

Pull-out specimens were cast and prepared as described in the Chapter 3, section titled Headed Bar Pull-

out Specimen Casting. A total of six specimens were tested in tension with the same loading. The 

headed bar specimens were designated as HB1, HB2, HB3, HB4, HB5, and HB6. Specimens were tested 
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28 days after casting the closure concrete. Precast concrete age was 74 days at the time of testing. A 

typical test setup is shown in Figure 55.  

  

Figure 55. Typical pull-out test setup. 

Material Properties 

As the precast and closure pour concrete were poured for the headed bar pull-out specimens, a set of 

test cylinders were also prepared to determine material properties. These material properties are used 

in the finite element computer modeling part of this project. Material properties for cylinders included: 

compressive strength, splitting tensile strength, modulus of elasticity, and Poisson’s ratio. Concrete 

material properties are summarized in Table 11. Data for the compressive strength, split tensile 

strength, modulus of elasticity, and Poisson’s ratio can be found in Appendices D, E, and G of the thesis 

by Casanova, M. (2018).(49)  

Table 11. Pull-out tests concrete material properties summary. 

 
Compressive 

strength (psi) 

Split tensile 

strength (psi) 

Modulus of 

elasticity (ksi) 

Poisson’s 

ratio 

Age 

(days) 

Closure 8,453 768 4,322 0.194 28 

Precast 5,258 614 3,241 0.170 74 

 

Test Results 

Samples were tested as described in Chapter 3. A sample was inserted into the United Testing Machine 

and instrumentation was connected to the Strain Smart system. Before testing, the instruments were 

zeroed and the DAQ started recording data. Testing began by loading at a constant rate of 0.01 in./min. 

Data for headed bar pull-out specimens were collected up to the point of failure. Data past the failure 
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point was not useful since many of the strain gages broke or were damaged in the process. Figure 56 

shows the diagram referencing the labels corresponding to the concrete strain gages. Upper and middle 

strain gages are located at the top interface. The lower strain gage is located in the center of the closure 

concrete. Strain gages were applied to the front and the back side of specimens. 

 
Figure 56. Strain gage labels.  

 

Figure 57 shows a graph of the force versus time for all specimens. The graphs give an overview of the 

test. The initial portion of the lines, in the boxed area, represents the settlement of the specimen in the 

machine. The fixtures and connections resulted in slack for the specimen. Tensile testing typically 

applies a preload but to ensure correct zero values for calibration, this testing procedure did not use a 

preload. Each line has a distinct initial drop in load which indicates cracking at the top interface. Some 

specimens had several more drops in load before finally reaching the ultimate capacity. The force drops 

in Figure 57 are attributed to the cracks within the concrete. All the specimens experienced these drops 

before reaching the ultimate load. 

 
Figure 57. Force vs. time for headed bar pull-out tests. 
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Cracking initiated at the top interface and propagated horizontally across the sample. The sudden drop 

between 3,000 lb and 6,000 lb was the point when the top interface cracked. This will be referred to as 

the cracking force. Load kept increasing and the bottom interface began to show formation of cracks. 

After reaching the ultimate load, there was a sudden drop in load and the specimen cracked along the 

center rebar and down into the lower precast concrete section. Conical cracks also developed at the 

location of the center rebar head. All six specimens showed similar cracking behavior. Figure 58 shows 

the cracking of all specimens at the end of the tests. No spalling of concrete was observed at any point 

during the headed bar pull-out tests. Only concrete cracks were observed as shown in Figure 58. More 

detailed pictures are found in Appendix I of the thesis by Casanova, M. (2018).(49)    

 
Figure 58. Headed bar pull-out samples crack pattern at the end of the tests. 

 

Figure 59 shows the force versus displacement of the specimens. The figure also shows the points 

corresponding to cracking and ultimate failure load. Data can be found in Appendix I of the thesis by 

Casanova, M. (2018).(49)   

(a) HB-1 (b) HB-2 (c) HB-3 

(d) HB-4 (e) HB-5 (f) HB-6 
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Figure 59. Machine force vs. machine displacement. 

 

The force resisted by the head of the headed bar was calculated using equation in Figure 35 as described 

in Chapter 3. The applied force from the tensile load cell is graphed against the force in the rebar in 

Figure 60. Specimens showed similar behavior with the exception of specimen HB-1. The plots show a 

linear behavior up to the cracking load. The applied load drops slightly then load increases again. After 

cracking, the behavior becomes nonlinear. The graph also indicates the maximum forces. 

 

Figure 60. Applied force vs. force in the head of rebar in the pull-out tests. 
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Figure 61 shows the force versus crack expansion for specimen HB-2. The graph shows virtually no 

displacement until the top interface begins to crack. The initial vertical line is not exactly zero and it may 

be due to the vibrations from the testing machine. The extension rods of the LVDTs were not secured to 

the brackets to prevent them from being damaged so any external movement is read by the LVDTs. 

Large displacements indicated the first sign of cracking, which was also confirmed by the test pictures. 

From Figure 61, the initial crack for specimen HB-2 was around 4,200 lb which can also be seen in Figure 

56 (i.e., the end of the linear region).  

 

Figure 61. Force vs. crack expansion for HB-2. 
 

Table 12 shows the force values corresponding to the interface cracking and the maximum specimen 

capacity. Cracking and ultimate loads are graphically shown in Figure 62.  As shown in Figure 60, HB-1 

has a different total force versus force in the head curve compared to the rest of the specimens.  In 

addition, it has much lower cracking force and much larger ultimate force.  For these reasons, this 

specimen is not included in the cracking force and ultimate force averages. The average values for the 

cracking force and ultimate force are 5,820 lb and 12,511 lb, respectively.  The last column of Table 12 

shows the stresses in the upper bar at the ultimate loads.  These values were obtained by dividing the 

ultimate specimen force by the area of No. 5 bar.  Note that the upper connection of the United 

machine is directly attached to the upper No. 5 bar. 
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Table 12. Headed bar pull-out test forces and stresses. 

Sample 
Cracking 

force  
(lb) 

Force 
carried by 
the head 

at 
cracking 

force  
(lb) 

Ratio of 
force in the 
head to the 
specimen 

force in the 
linear 
region 

Ultimate 
Force  
(lb) 

Force 
carried by 

the head at 
ultimate 

load  
(lb) 

Ratio of 
force in the 
head to the  
specimen   
ultimate 

force  

Stress in  
the upper  

bar at  
ultimate  

force 
(ksi) 

HB-1 3,245* 193* 0.06 15,176* 7,085* 0.47 49.0* 

HB-2 4,206 214 0.06 11,949 4,167 0.35 38.5 

HB-3 5,661 184 0.04 12,275 3,116 0.25 39.6 

HB-4 6,420 235 0.04 13,589 3,004 0.22 43.8 

HB-5 5,362 311 0.06 12,222 3,617 0.30 39.4 

HB-6 7,451 253 0.03 12,522 3,674 0.29 40.4 

Avg. 5,820 239 0.05 12,511 3,516 0.28 40.3 
   *HB-1 force values were not included in average values. 

 

 
Figure 62. Headed bar pull-out force values. 

 

Figure 63 shows a typical force versus average strain in the upper, middle and lower concrete strain 

gages.  Since at each location, there are two strain gages, each curve represents the average response of 

strain measured in front and back of the specimen. The upper and middle strain curves show the strains 

at the interface for precast and closure pour materials, respectively.  While, the lower strains are at the 

center of the closure pour.  As seen in Figure 63, after reaching the cracking load, the strain gages at the 

top interface showed a significant drop in strain. After specimen cracking, the top and middle strain 

gages did not show useful data. Strain in the lower strain gage increased until cracking was reached, at 

which point there was a slight decrease in the force. After cracking, the lower strain stayed somewhat 
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constant and then increased with the increase in load until failure.  As it can be seen from Figure 59, 

concrete strains are initially linear, but the behavior becomes highly nonlinear. This was the case for all 

the pull-out tests.  More data on concrete strains are presented in the thesis by Casanova, M. (2018).(49) 

 
Figure 63. Force vs. average concrete strain for HB-1. 

 

Large Beam Tests 

Flexural beam tests were the final phase of the experimental work. Figure 60 shows a typical test for a 

beam in three-point bending. Two sets of beam specimens were prepared; three beams were used for 

testing in three-point bending and three were tested in four-point bending. As described in Chapter 3 

section titled Flexural Beam Test, the distributed loading represents the footprint of a set of truck tires. 

Large beams (LB) designated with 1, 3, and 5 were tested in three-point bending, and the beams 

designated with 2, 4, and 6 were tested in four-point bending.   

 

Figure 64. Typical three-point flexural beam test. 
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Closure connections were cast in sets of two, so LB-1 and LB-2 were cast on the same day. Similarly, LB-3 

and LB-4 were cast on the same day, as were LB-5 and LB-6. Material property tests were conducted 

with each set of beams. In all cases, the age of closure pour concrete was 28 days and the precast 

concrete was 119-123 days.   

Material Properties 

Similar to the headed bar pull-out tests, sets of cylinders were used to determine material properties of 

the precast and closure concrete for computer modeling. Concrete properties included: compressive 

strength, splitting tensile strength, modulus of elasticity, and Poisson’s ratio. Table 13 shows the 

summary of material properties for beam specimens. Average compressive and splitting tensile 

strengths for the closure pour concrete and precast concrete were similar to the averages from the 

headed bar pull-out tests. Compressive strengths were 8,354 psi and 4,969 psi for closure pour concrete 

and precast concrete, respectively. Split tensile strengths were 773 psi for closure pour concrete and 

596 psi for the precast. Modulus of elasticity and Poisson’s ratio values were within the ACI design-

recommended range. More data on the compressive and tensile strength, modulus of elasticity, and 

Poisson’s ratio can be the found in the thesis by Casanova, M. (2018) and its Appendices D, E, and G.(49) 

Table 13. Beam concrete material properties summary. 

 
Compression  
strength (psi) 

Split tension  
strength (psi) 

Modulus of  
elasticity (ksi) 

Poisson’s 
ratio 

Age  
(days) 

Closure 8,354 773 4,425 0.176 28 

Precast 4,969 596 3,181 0.154 119-123 

Test Results 

Beam specimens were tested as described in Chapter 3. Beams were prepared for testing by attaching 

concrete strain gages as described in Chapter 3 in section titled Specimen Instrumentation. Strain gages 

were attached to the concrete on the underside of the closure concrete. A coat of white paint was 

applied to the middle sections of the beam and the interface outlined with marker as shown in Figure 

65. Similar to the pull-out tests, the paint assisted with identifying the formation of cracks.  

 

Figure 65. Beam specimen painted and interface lines drawn. 
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Figure 66 shows the two beam loading diagrams.  The loading for the three-point bending is not a true 

three-point loading due to the one-inch thick steel plate distributing the load.  Even though it is a 

distributed load it will be referred to as three-point bending. The steel plate with dimensions 20 in. x 10 

in. x 1 in. was placed in the center of the beam. The plate distributed the load as seen in Figure 66. The 

load is assumed to be uniformly distributed along the length of the plate. For calculating the moment, 

the measured load from the machine is divided by 20 inches. The equation in Figure 67 is used to 

calculate the moment for the three-point bending.  The equation in Figure 64 is used to calculate the 

moment for the four-point bending case. 

 
Figure 66. Beam loading diagrams. 

 

𝑀 =  𝑅 (𝑎 +  
𝑅

2𝑤
) 

Figure 67. Moment equation for the three-point loading. 

Where, 

𝑀 = Maximum (mid-span) moment (lb-in), 

𝑅 = Support reaction =  
𝑃

2
 , 

𝑤 = Distributed load = 
𝑃

20"
  (lb/in.), 

𝑎 = Distance from the end support to the start of distributed load = 26 in. 

(a) Three-point loading 

(a) Four-point loading 
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𝑀 =  𝑅𝑏 

Figure 68. Moment equation for the four-point loading. 
 

Where, 

𝑀 = Maximum beam moment (lb-in), 

𝑅 = Support reaction =  
𝑃

2
 , 

𝑏 = Distance from the support (reaction) force to the force at the one-third location used in the 

four-point flexural beam test = 24 in. 

 

For the three-point loading, distributing load over the 20 in. x 10 in. steel plate was not ideal. The top 

surface of the beam was not perfectly flat. Gaps between the steel plate and the beam could be seen. A 

rubber pad was added under the loading plate for samples LB-3 and LB-5 to provide an evenly 

distributed load and to minimize gaps. The rubber reduced gaps between the steel plate and the 

concrete with only a few larger gaps visible.  

The testing schematic shown in Figure 69 identifies the instruments and equipment for beam tests. The 

schematic refers to the designations for “left” and “right” instrumentation. A computer monitor and 

cameras were set up to monitor and record the progress of the tests.  

 
Figure 69. Flexural beam test schematic (top view). 
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Figure 70 shows the series of pictures taken while specimen LB-5 (one of the three-point loaded beams) 

was being loaded. Cracks first appeared at the bottom of the right interface. In this test, the ultimate 

force was 9,052 lb. But, the loading continued until the applied force deceased to about 6,000 lb.  

The beam failure for LB-2 is shown in Figure 71. After testing the beam’s cracking was mapped by 

indicating the sequence in which they appeared. The sequence of numbers represents the stages of 

cracking which are defined as: 

1. Primary: Precast-closure interface cracked (at both interfaces) and propagated up along the 

shear key. 

2. Precast: Several smaller cracks formed (1-3 in. long) in the precast segments. These occurred 

prior to reaching the ultimate beam capacity. 

3. Shear: Shear crack started from the lower corner of the shear key and extended up toward the 

opposite interface. This occurred after reaching the ultimate beam capacity.  

4. Secondary: Cracks formed as a result of excess deflection. These occurred well beyond the 

ultimate load. 

 

Figure 72 shows a diagram of the typical cracking for flexural beam specimens. The crack appeared on 

the unreinforced edge on both sides of the beam. The secondary cracks were mainly to observe the 

cracks extending toward the top of the beam. After inspecting the beams no cracks were seen extending 

to the surface. The secondary horizontal cracks were 0.5-1 in. below the surface. Figure 73 shows the 

cracks on both sides of all the beam specimens beyond the ultimate load.  

Figure 74 shows the bottom of LB-1. Cracks in the connection portion as well as in the precast concrete 

can be seen. Longitudinal cracks (along the length of the beam) formed below the two headed rebars in 

the middle of the beam as seen in Figure 74. Precast cracks can be seen marked in red located about 8 

inches away from the connection.  

In all cases the shear crack always formed on the lower right and extended to the top left of the 

connection. This was a result of the reinforcing and the width of the beam. The right side of the 

connection was unreinforced as shown in Figures 69 and 74(b). Primary cracks on the right side of the 

connection were also much larger than the cracks on the left side.  
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Figure 70. Selected pictures during testing of specimen LB-5. 
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Figure 70, continued. Selected pictures during testing of specimen LB-5. 

 

 

Figure 71. Beam cracking for specimen LB-2. 
 

 
Figure 72. Typical beam cracking diagram.  
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Figure 73. Beam specimen cracks beyond the ultimate load. 

 

LB-1 

LB-2 

LB-3 

LB-4 

LB-5 

LB-6 

 Left Side                 Right Side 



Effectiveness of High-Early Strength Concrete Class 50AF with Polypropylene Fibers as a Cost-Effective Alternative for Field-Cast 
Connections of Precast Elements in Accelerated Bridge Construction 

68 
 

 
Figure 74. Cracking on bottom of specimen LB-1. 

 

The beam force-deflection graphs for all six beams tested are shown in Figure 75.  The solid lines 

represent the beams under three-point (3P) bending and the dashed lines represent beams under four-

point (4P) bending. Performance of beams LB-1, LB-3, and LB-5 was similar. This is also the case for LB-2, 

LB-4, and LB-6. Ultimate forces are also identified in Figure 75. Similar to the headed bar tests, the point 

of cracking load was not easily determined. The cracking load was determined from visual observations 

of the interface. 

Figure 76 shows the relationship between the mid-span moment and stress in the bottom middle two 

rebars next to the head. The stress values were calculated from the strain gages data next to the head 

(see Figure 70). 

A summary of average values for large beam tests is shown in Table 14. The values correspond to the 

cracking and ultimate forces and moments. Mid-span deflection values at the ultimate forces are also 

given in Table 14. Refer to Appendix J of the thesis by Casanova, M. (2018) for graphs and data of the 

flexural beam tests.(49)  

As shown in Table 14, the average interface cracking forces are estimated at 2,867 lb and 2,933 lb for 

three-point and four-point bending tests, respectively. The corresponding averages of ultimate forces 

are 9,492 lb and 12,209 lb, respectively. The average mid-span moments are 44.4 kip-in. and 35.2 kip-in. 

for three-point and four-point bending tests, respectively. The corresponding averages of ultimate 

moments are 147.1 kip-in. and 146.5 kip-in., respectively. 

Precast cracks 

Headed rebar 

(a) Side view 

(b) Connection cracks 

Longitudinal cracks 



 
Chapter 4. Experimental Results 

69 
 

 

 

Figure 75. Beam force vs. deflection. 
 

 

Figure 76. Mid-span moment vs. rebar stress next to the bar’s head. 
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Table 14. Summary of beam test results. 

Test  
type 

Sample 
Cracking  

force  
(lb) 

Cracking 
 moment  
(kip-in.)* 

Ultimate 
force 
(lb) 

Ultimate 
moment 
(kip-in.) 

Mid-span  
displacement 

at ultimate force  
(in.) 

3-point 

LB-1 3,300 51.1 9,573 148.4 0.281 

LB-3 3,000 46.5 9,850 152.7 0.273 

LB-5 2,300 35.7 9,052 140.3 0.295 

Avg. 2,867 44.4 9,492 147.1 0.283 

4-point 

LB-2 3,500 42.0 11,862 142.3 0.302 

LB-4 2,800 33.6 11,862 142.3 0.326 

LB-6 2,500 30.0 12,902 154.8 0.357 

Avg. 2,933 35.2 12,209 146.5 0.328 
* For the three-point bending test, the moment is calculated at the center, although crack is at the interface. 

Concrete strain gage data is plotted against the beam mid-span moment in Figure 77 for three-point 

bending beams (i.e., specimens LB-1, LB-3, and LB-5). The strain behavior is similar to the interface strain 

data for the headed bar pull-out tests. The curves show an increase in strain up to approximately 50 

microstrain, then decrease until failure. Figure 77 also shows the points where the initial hairline cracks 

were observed at the interface. This is where the curves begin to behave more nonlinear. Inspecting the 

strain gages revealed that cracking had occurred under some of the gages and some showed partial 

debonding. More data and discussions on beam concrete strain gages are provided in thesis by 

Casanova, M. (2018). 

 
Figure 77. Moment vs. average concrete strain for beams under three-point load. 
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Discussion on Headed Bar Pull-out and Beam Test Results 

This section provides a discussion on the experimental results of the headed bar pull-out tests and the 

beam tests. For the pull-out tests, strain gages were installed on the upper steel bar and several 

locations on the concrete. In addition, crack initiation at the upper interface was monitored. Among all 

the data, we believe the most useful information is provided by plots of total tensile force in the 

specimen versus the force carried in the head of the upper bars. This figure will be used in FE modeling 

in the next Chapter. Out of the six curves, one seems not to follow the general trend of the other five 

(see the graph for HB-1 in Figure 56) and was eliminated when comparing to the FE results.  

Despite the fact that the upper interface between the precast and closure pour concrete completely 

failed in the headed bar pull-out tests, the upper bar on the average carried 40.4 ksi or 67% of the steel 

specified yield strength. This shows that the strut action and the force transfer between the opposing 

lapped bars works rather effectively. 

In the beam tests, the strain gages were installed on the lower two headed bars, the bottom concrete, 

and displacements were measured at mid-span. In both cases of three-point bending and four-point 

bending, the initial crack always formed on the lower right (as one views the beam from either side) and 

extended to the top left of the connection. This was a limitation of the beam specimens; i.e., 

unsymmetrical placement of reinforcing and the small width of the beam. To explain this somewhat 

differently, the unsymmetrical placement of bars causes the unreinforced interface edges (see Figures 

69 and 74) to be less stiff than the reinforced interface edges. Thus, causing the unreinforced edges to 

deform more under a given force and impose a twisting moment in the middle of the beam.   

As an estimate, if one were to use the cracking moment formula of 𝑀𝑐𝑟 = 𝑓𝑟 𝐼𝑔 𝑦⁄ , where 𝑓𝑟 = interface 

bond strength (modulus of rupture) = 612 psi, 𝐼𝑔= gross moment of inertia, and 𝑦 = half the beam depth, 

a cracking moment value of 78.3 kip-in will be determined. This value is much larger than the cracking 

moment values obtained from the experiments (see Table 14), confirming that the interface cracks 

appeared much earlier than anticipated. 

Regardless of the loading, the average ultimate moment in the beam specimens was approximately 147 

kip-in.  As a comparison, if one were to ignore the upper bars, assume that two continuous No. 5 bars 

are placed at the bottom, and assume the entire beam is made with precast concrete, the nominal 

bending moment capacity of 210 kip-in. is calculated. Therefore, the nominal moment capacity, 𝑀𝑛, of 

the beam with closure pour and lapped headed bars in the middle is 70% of that calculated for a beam 

with continuous bottom bars.   

The mid-span moment versus the stress next to the head of the headed bars provided the most useful 

information. This plot will be used for comparing results with the FE model results. As expected, Figure 

76 shows that initially the bar stresses vary linearly with increasing bending moment, and then the 

relationship becomes nonlinear until ultimate moment is reached.  
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Chapter 5 

Finite Element Modeling 

Introduction 

Finite Element (FE) modeling has been a useful tool in modeling structural and other engineering 

problems for several decades. In this chapter, various approaches have been evaluated to model pull-

out behavior of headed rebars in concrete. To test the accuracy of the developed models, test results 

from previous experimental studies have been compared with the FE results. For developing and 

simulating the finite element models, ANSYS 18.1, a general-purpose FE software was used.(59) This 

software has the capability to simulate linear and nonlinear structural, fluid, electromagnetic or 

thermodynamic problems. The structural analysis capabilities of ANSYS were used for this study. ANSYS 

offers a variety of options in terms of element and material selection. Some of the options that were 

considered in this study are discussed in the following sections.  Detailed information is provided in the 

thesis by Rashique, U. (2018).(30) 

Concrete Element and Material Properties 

SOLID65 

SOLID65, also known as CONCRETE65, is an 8-node brick element to model 3D solids with or without 

reinforcing bars. See Figure 78.  The reinforcing bars can be modeled using the native “smeared rebar” 

option where the rebars can be defined to be smeared throughout the element in three different 

directions. This can be input as three real constants each having four parameters named MAT, VR, 

THETA and PHI. MAT and VR are the material properties and volumetric ratio of rebars with respect to 

concrete in a particular direction, respectively. THETA and PHI are the directions in terms of angels from 

the x-axis toward the y and z-axes in the global coordinate system. Moreover, the SOLID65 element has 

a unique capability of crushing and cracking in compression and tension, respectively. The crack at an 

integration point is represented by introducing a plane of weakness in the direction of cracking; i.e., the 

material turns from isotropic to orthotropic. When the element crushes due to compression at an 

integration point, it is defined as the complete deterioration of the structural integrity of the material 

and the structural stiffness at the integration point in question can be ignored. To determine the failure 

in tension and compression, the William-Warnke failure criterion is employed.(60) These features make it 

a very suitable element to model concrete. But it is also to be noted that, these features introduce 

nonlinearities in the FE model and often create convergence problems. 

Cast Iron Model 

With the default material specification option in ANSYS, the plasticity curve is mirrored in both tension 

and compression. But this is not suitable for materials like concrete that have different compressive and 

tensile strengths. To model different tensile and compressive properties, the Cast Iron material model in 
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ANSYS can be used. It was originally developed to model grey cast iron which is a two-phase material 

with different compressive and tensile behavior (Hjelm, 1994).(61)  

 
Figure 78. Geometry of SOLID65 element.(59) 

 

There are three input parameters: plastic Poisson’s ratio, uni-axial compression and uni-axial tension. 

The latter two are input as sets of stress-strain points representing multi-linear isotropic hardening 

behavior. These points are obtained from the uni-axial compression and tension tests of the material 

respectively. Plastic Poisson’s Ratio is an FE modeling concept to address plasticity problems with a 

changing Poisson’s ratio.  

Concrete-Rebar Bond Modeling 

As discussed in Chapter 2, the bond between concrete and reinforcing bars is a complex phenomenon to 

formulate. It also adds nonlinearities to the FE model that can create convergence issues and increase 

computation time. To overcome these problems, the concrete and rebar are often assumed to be 

perfectly bonded in FE simulations where it is reasonable to assume that the localized effects of bond-

slip will not have a significant effect on the results. Otherwise, the bond-slip relations is to be 

incorporated into the model. There are various options in ANSYS to simulate the bond-slip response 

between steel and concrete. 

COMBIN39 

COMBIN39 is a nonlinear spring model that can be used in 1-D, 2-D or 3-D simulations. It can have a zero 

or non-zero length. The non-zero length spring elements are generated between two coincident nodes 

and have 1-D application only. The spring stiffness is input as points in a force-displacement curve. This 

element can be used as interface element between steel and concrete similar to that proposed by Ngo 

and Scordelis (1967) discussed in Chapter 2.(41) 
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Contact Debonding and Interface Delamination 

Contact debonding and interface delamination are two techniques in ANSYS that can simulate 

progressive separation of a bond. Both methods are essentially the same in most aspects. The difference 

is that debonding is associated with contact elements and delamination is associated with interface 

elements. Contact elements are used to define other contact features (friction, perfect bond, frictionless 

sliding, etc.), but the interface elements do not have these capabilities. Debonding and delamination can 

be modeled using two methods: Cohesive Zone Model (CZM) method and the Virtual Crack Closure 

Technique (VCCT) method. The CZM method is bond shear-separation distance based, while the VCCT 

method is based on fracture energy. The CZM method is simpler and more suitable for modeling steel-

concrete bond. There are two methods of formulation for the CZM method: bilinear and exponential. 

They model the bond traction (τ) and relative displacement of the two surfaces (δ). Both the curves 

have two arms, one that reaches to the maximum bond stress and the other one represents the 

subsequent softening of the bond. The bilinear CZM method is shown in Figure 79. 

 

Figure 79. Bilinear CZM method graph.(59) 
 

Verification using a Simple Concrete Model 

The first step in modeling the specimens used in this study was to decide on suitable modeling 

techniques. It was convenient to use the SOLID65 element along with the William-Warnke criterion 

for modeling concrete because of the element’s cracking capability. Using the appropriate 

parameters, a simple axial concrete model with both ends tapered (i.e., smaller cross-section in the 

middle region and larger cross-sections at the ends) was loaded in tension and compression. This 

model eliminated the stress concentrations at the ends and forced the cracks to appear in the 

middle section. Both the tensile and compressive stress-strain graphs obtained from this model 

matched the input material stress-strain model. The verification described is presented in detail in 

the thesis by Rashique, U. (2018).(30) 
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Calibration of the Bond-slip Spring Element 

To use the COMBIN39 element, a force versus displacement curve has to be defined for each 

element. In this case, this curve should closely resemble the bond-slip behavior for the particular 

model. From the studies of Hong et al. (2008), an equation to determine bond stress in terms of 

shear stress per unit interface area can be obtained:(48) 

𝜏𝑏 = 0.9(𝑓𝑐
′)2 3⁄ {1 − 𝑒𝑥𝑝 [−40 (

𝑆

𝑑𝑠
)

0.6

]} 

Figure 80. Bond stress versus bond slip.(48) 
 

Where, 𝜏𝑏= bond stress, 𝑓𝑐
′= compressive strength of concrete, 𝑑𝑠= bar diameter and S = bond slip. 

Values of 𝜏𝑏 are obtained for different values of S using the above equation. Then the bond stress 

values can be multiplied by 𝜋𝑑𝑠𝑙 where 𝑙 = embedment length of the bar, to obtain the bond force 

value. These force values are to be divided by the total number of springs to produce the force 

versus displacement curve for each spring connecting steel bar and concrete element nodes. Figure 

81 shows a typical force-displacement for a bond-slip spring element.  

 
 Figure 81.  Force-displacement curve used for the bond slip springs. 

 

However, the equation in Figure 80 already takes the crushing and failure of concrete around the 

rebar into account. If this equation is used to model bond-slip where cracking/failure criteria are 

defined for the concrete, the model will produce a softer response. Because the transference of 

force from the springs to the adjacent concrete will cause the concrete to fail. But this failure has 

already been addressed in the force-displacement definition of the spring. Therefore, in the FE 

model used in this study, the force-displacement curve for a spring element was adjusted. To 

calibrate this curve, a simple pull-out test of a regular deformed bar conducted by Rao et al. (2007) 

was modeled in ANSYS 18.1.(35) In this experiment, as shown in Figure 82, a No. 5 steel bar was 

embedded in a concrete cube of dimension 6 in. x 6 in. x 6 in. The development length of the bar 

was 6 in. For other details, see the thesis by Rashique, et al. (2018).(30) A known upward 

Force 

Displacement 

From Hong, et al., 2008  

Bilinear approximation 
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displacement was applied on the top surface of the rebar. The four edges in the top surface of the 

concrete cube were constrained. 

 

Figure 82. Geometry of the simple pull-out test by Rao et al. (2007).(35) 
 

96 COMBIN39 spring elements were created at the interface between the steel and concrete. Their 

force-displacement curves were assigned the bilinear approximation shown in Figure 81. The concrete 

and steel were modeled using SOLID65 and SOLID186 elements, respectively. The slip of the rebar at the 

free end was monitored. The bond stress-slip curve obtained from the FE model had lower slope. 

Therefore, it was decided that the bilinear bond-slip curve for each spring had to be adjusted to have 

larger slope in order to give the net effect of the curve obtained from equation in Figure 80. 

Finite Element Model of Pull-out Tests 

As described in the Chapters 3 and 4, six headed bar pull-out specimens were tested. The specimen 

tested was described in a common setup for the pull-out specimens is shown in Figure 14. Nonlinear 

spring element COMBIN39 between steel and concrete to simulate bond-slip response.  A quarter model 

was used in ANSYS as shown in Figure 84.  SOLID65 elements were used to model the concrete parts, 

and the steel rebars were modeled using SOLID186, another 8-noded 3D solid element. Several ways of 

modeling closure pour to precast interface bond were explored. It was determined that Cohesive Zone 

Modeling (CZM) was the best option. Cohesive Zones were defined in the two closure-to-interface 

regions. Mode I Cohesive Zone Model was used which debonds only due to normal stress. The maximum 

normal stress for debonding was defined as 256 psi, and the contact gap at the completion of debonding 

was defined as 0.1 inch. The reduced value was based on the studies conducted by Kim and Taha 

(2014).(62) They studied the relationship between the concrete’s modulus of rupture, splitting tensile 

strength and direct tensile strength.  The relationships are given by the equations in Figure 83. 

𝑓𝑟 = 0.85√𝑓𝑐
′ ;                 𝑓𝑠𝑝 = 0.49√𝑓𝑐

′ ;               𝑓𝑡 = 0.34√𝑓𝑐
′     

Figure 83. Concrete tensile strength values in MPa.(62) 
 

Where, 𝑓𝑟, 𝑓𝑠𝑝, 𝑓𝑡 and 𝑓𝑐
′ are the modulus of rupture, splitting tensile strength, direct tensile strength 

and compressive strength of the concrete, respectively, in terms of MPa. Recall that from Chapter 4 the 
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interface bond strength between closures pour and precast was determined as a modulus of rupture 

based on ASTM C78. Also, splitting tensile strength were determined for closure pour and precast 

concrete.  For the FE analysis, the values of direct tensile strength, 𝑓𝑡, were used for the tensile strength 

of interface bond, the closure pour concrete, and the precast concrete. Using relations in Figure 83, 

these values were estimated as 256 psi, 556 psi and 435 psi, respectively. From experimental results, 

knowing that rebar is only loaded up to 67% of yield strength, the steel was modeled as a linear isotropic 

material with a modulus of elasticity of 29,000 ksi and Poisson’s ratio of 0.3. 

 
Figure 84. Schematic diagram of the pull-out test quarter model. 

 

From the previous attempts, it was evident that the meshing of the model plays a very important role in 

the speed and accuracy of the simulation. The brick elements created by “sweep meshing” have a 

greater tendency of convergence than its tetrahedral counterparts. Also, brick meshes have better 

aspect ratio in general and reduce the total number of nodes and elements. This is important for 

SOLID65 elements, as they are highly nonlinear and often unstable due to their cracking and crushing 

capabilities. But manual meshing, in particular sweep meshing is a complicated task. It requires 

experience and patience from the person creating the mesh. A body cannot be swept, if:(59) 

• There is a completely contained internal void in the body. 

• A source and target pair cannot be found. That is, the sweeper cannot find at least one path 

from a source surface to a target surface connected by edges or closed surfaces. 

• If a “Sizing control” is used on a body with hard edge sizing and the source and target faces 

contain hard divisions which are not the same for each respective edge. 

To make a body “sweepable”, it is often required to divide the body into several parts until each part 

satisfies the requirements to be swept. But, too many divisions can make the setup of the FE model very 
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complicated. So, a compromise has to be found based on the particular model. A model can perform in a 

satisfying manner if the number of tetrahedral SOLID65 elements is below 10% of the total number of 

elements.(59) So, a 3D quarter model was created and divided in such a way that more than 90% of it can 

be meshed using brick elements. Also, the sizing of the meshes had to be defined carefully so that the 

steel elements and the neighboring concrete elements have coincidental nodes that will be used for 

defining the bond-slip spring elements. The final meshing is shown in Figure 85. 

 

Figure 85. Meshing of the pull-out test quarter model. 
 

Since a quarter model was used, frictionless supports were provided at the surfaces at the planes of 

symmetry. This allowed the nodes at those surfaces to move in the plane of symmetry, but restricted 

their movement normal to the symmetry planes. Constraint equations were used between the 

coincidental nodes of the steel and the concrete elements to restrict their movement in the normal 

direction. To control the movement in the tangential direction, i.e., to define the bond-slip relationship, 

single degree of freedom (DOF) in the tangential direction COMBIN39 elements were introduced 

between the coincidental nodes. As shown in Figure 87, at every 1 in. interval along the length, the 

quarter of the circumference of the middle rebar had three bond-slip spring elements attached to it.  

Two nodes on the middle rebar near the head was monitored to obtain the strain values. Total force was 

obtained from the support reactions. From the strain data, force in the head was calculated using the 

equation in Figure 86. 

𝐹𝐻  =  𝐴𝜀𝐸 

Figure 86.  Equation for determining force in the steel bar’s head. 
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Where FH = Force in the head, A = cross-section area of the bar, ε = strain and E = modulus of elasticity 

of the steel. The total force versus force in the head curve was calculated from FE model results and 

compared to the results of the pull-out specimen experiments (see Chapter 4, Figure 60). As noted in 

Chapter 4, the results of HB-1 was not included in the experimental curves. Figure 88 represents the 

final successful simulation for the pull-out test. For details of other trials, see the thesis by Rashique, U. 

(2018).(30) The FE result is in very good agreement with the experimental results in the linear region. In 

addition, the nonlinear part also mostly remains inside the spectra of the experimental values.  

 
Figure 87. Schematic of placement of COMBIN39 elements between rebar and concrete. 

 
Figure 88. Total force in the pull-out specimen vs. force in the rebar’s head (with bond-slip). 

 

It can also be noticed from the FE model that, although both the precast and the closure pour 

concrete cracks after reaching their tensile strengths, there is no compressive crushing in concrete. 

The maximum compressive stress observed in the concrete was 2,100 psi, which is significantly less 

than the compressive strengths of both precast and closure pour. This observation is significant and 
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Experimental Average 

FE Results 



 
Chapter 5. Finite Element Modeling 

81 
 

shows that nonlinear behavior in the pull-out test is only due to tensile cracking of concrete and 

failure of the upper interface.  As a contrast to the FE result when bond-slip is used, Figure 89 shows 

one of the earlier attempts when bond-slip was ignored and perfect bond was assumed between 

the headed bars and the concrete. As it can be seen from Figure 89, use of perfect bond does not 

fully engage the head of the upper bar. That is, for the same total force, it results in a smaller force 

in the upper bar’s head.  

 

Figure 89. Total force in the pull-out specimen vs. force in the rebar’s head (no bond-slip). 
 

Two FE crack plots are shown in Figures 90 and 91 for loadings of 3,300 lb and 9,500 lb, respectively.  

It should be noted that the orientations of the figures are mirror images of those shown in Figures 

84 and 85.  A study of the crack plots shows that, the crack plots are in agreement with the 

experimental observations. It can be seen from Figures 90 and 91 that cracks started from the top 

of the specimen near the bar and continued to propagate downward. When the crack reaches the 

interface, the interface fails quickly, and the previous crack again continues to propagate down 

towards the head. In the crack plots, the red circles represent primary cracks, while the green and 

blue circles denote the secondary and tertiary cracks respectively. The yellow area at the interface 

zone denotes the failure of the interface in that region. From the figures, it is observed that the 

interface crack propagation is similar and in line with the experimental observation.  
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Note:  Cracks at substep 4. Crack propagating from the top and the interface is failing. 

Figure 90. Crack propagation in the FE model of pull-out test at force = 3,300 lb. 
 

 

 
Note: Cracks at substep 8: The interface failed and the initial crack propagating further down. 

Figure 91. Crack propagation in the FE model of pull-out test at force = 9,500 lb. 
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Finite Element Modeling of Beam Bending Tests 

The final task of this study is to develop a finite element model of three-point and four-point beam 

bending tests. A number of approaches were taken to model the beams. Implementing the same 

modeling techniques from the previous section in the modeling of the beams proved to be problematic. 

Some new techniques were introduced to resolve these problems, but the models were still based on 

using springs to simulate bond-slip and CZM to model interface failure. 

As described in Chapters 2 and 3, a total six beams were tested for bending. Each beam had a span 

of 72 inches between the supports, and were 12 inches in width and 8 inches in height. The closure 

pour section was 10 inches long with shear keys on both sides. A total of four No. 5 headed bars, 

two from each side, created a lap splice inside the closure at the bottom. Regular No. 5 reinforcing 

bars were used in a similar fashion at the top. Figure 92 shows the different parts of the 3D model 

used for the FE analyses. 

 

Figure 92. Different components of the beam 3D model. 
 

Three of the beams were tested in three-point bending, and the rest three in four-point bending. For 

three-point bending, the point load was applied on a 1-in. thick steel plate of a dimension of 20 in. x 10 

in. on the top of the beam. This was done to simulate a truck wheel load more realistically. The same as 

the FE model of the pull-out tests, several models were considered for the beam tests.  For details, see 

the thesis by Rashique, U. (2018).(30) For brevity, here only the final model of the three-point bending 

beam is presented.   

(a) Precast concrete segments and steel bars 

(b) Beam with closure pour concrete  
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In the beam model, COMBIN39 elements were used again to simulate bond-slip. The spring elements 

were only applied to the bottom bars. As the top portion of the beam is in compression, the upper bars 

do not take much load. So their bond-slip was not considered significant and perfect bonding was 

assumed. The surfaces of the bottom rebars and the surfaces of the voids in concrete that encase the 

rebars were carefully meshed first so that coincidental nodes could be created between the rebars and 

the surrounding concrete. A 0.25 in. thick layer of concrete surrounding each bottom bar was given a 

linear elastic material property. Use of SOLID65 (CONCRETE65) created convergence problems.  

Therefore, this time, for the rest of the concrete parts, “yielding” in tension and compression were 

defined using the Cast Iron material model. The linear elastic regions were created to reduce the 

nonlinearity in the model. Previous attempts using the spring elements but no linear elastic region failed 

to converge. The reason is that, the force in transferred from rebar to adjacent concrete, the concrete 

reaches its strength at some point and fails. The combined action of nonlinear springs and failure of 

concrete at one of the nodes of the spring elements suddenly introduces a large amount of 

nonlinearities in the model. As the beam model is significantly larger than the pull-out model, this 

sudden influx of nonlinearities creates convergence problems in the beam model. As the springs were 

connected to linear elastic elements, there was no need to adjust the force-displacement curve for the 

springs. The springs were only allowed to move in the direction of the length of the beam. They had no 

DOF in the other two directions. But this was a bending test. So if “Large Deflection” was turned on in 

the ANSYS solution options, it would take the bent shape of the beam into account in each substep. In 

that case, the displacement of the springs in the other two directions would become significant and the 

assumptions for the spring elements would have become invalid. To avoid this complication, “Large 

Deflection” option was turned off.  CZM was used to model interface failure in tension. The debonding 

tensile strength was reduced to 256 psi to make it consistent with the pull-out model. 

Stresses at two points of the first bottom rebar on the right side were monitored. One of the two points 

was close to the head, and the other point was right at the interface of precast and closure pour (recall 

that in the experiments, only the bars next to the head were instrumented with strain gages). As shown 

in Figure 93, the stresses at these two locations were plotted against the moment at the mid-span of the 

beam. The stress on the bar close to the head closely matches the experimental results in the linear 

region up to a moment of about 110 kip-in. The match becomes not as good in the nonlinear region and 

the bar’s stress does not increase in the same way as the experimental results. Compared to the stress 

next to the bar’s head, the FE results at the interface shows larger stress for the same bending moment.  

This is possibly due to cracks appearing at the right interface, thus allowing the rebar at the interface 

being pulled away more than around the head.  In Figure 93, the point of average cracking moment at 

the interface is noted. See also Table 14 in Chapter 4. After this point, the stress in the bar at the 

interface increases much more with increasing bending moment than the stress near the head.    

In the experimental phase, all six specimens cracked at the right-hand side closure to precast interface. 

Looking at the crack propagation in the finite element model of Figure 94, the right-hand side interface 

opens up more. So the FE model is in good agreement with the experimental results. The reason why 

the right-hand side interface cracked every time can be explained by the asymmetric splice 

configuration of the rebars.  It should also be noted that the maximum compressive stress observed in 
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the concrete in the FE model was approximately 3,700 psi, which is less than the compressive strengths 

of both precast and closure pour. In addition, the larger compressive stresses were directly below the 

location of applied force from the machine. 

 
Figure 93. Moment vs. rebar stress for the three-point bending test. 

 

 

Figure 94. Exaggerated deformed view showing interface crack in three-point bending test. 
 

Discussion on Finite Element Modeling Results 

The FE model of the pull-out test specimen and the beam performed well in the linear region and 

resulted in very good agreements with the experimental results. The agreement in the nonlinear portion 

was not as good with the beam bending test. Although not measured in the experiments, the FE model 

of the beam showed a larger bar stress at the interface compared to the bar stress next to the head. 

In the experiments, initial 
hairline cracks appear at the 
right interface at the average 
moment of 44.4 kip-in. 
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There were more issues with convergence of the beam models compared to the pull-out models. Use of 

contact elements is another reason for the convergence problems. Contact elements increase the node 

and element count in an analysis. Moreover, the contact elements themselves have highly nonlinear 

formulation. In comparison, gluing volumes (which merges the coincidental nodes in adjacent volumes) 

led to better convergence performance. However, gluing volumes results in perfect bonding and does 

not allow for bond-slip response. With no bond-slip, the head carries less force in the FE model than 

what was observed in the experiments. This is true for both the pull-out test and the beam bending test. 

More work needs to be done on refining the FE model of the beam bending test to improve the 

response in the nonlinear region for better match with the experimental results. 
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Chapter 6 

Bridge Modeling and AASHTO LRFD Design Requirements  

Introduction 

In this chapter a bridge with Deck Bulb-T girders is modeled in ANSYS. Using the optimum mix containing 

high-early strength concrete with Polypropylene fibers (Mix D), the behavior of the closure pour 

connections between precast girders is examined under the AASHTO LRFD design requirements for 

three limit states (AASHTO, 2017).(63) These limit states are: (1) Strength I Limit State for flexural 

capacity; (2) Service I Limit State for controlling flexural cracking; and (3) Fatigue I Limit State for infinite 

load-induced fatigue life.  

Bridge Description and Assumptions 

One span of the new design of SH-36 Bridge over Bear River is considered for analysis under the AASHTO 

design truck and the AASHTO fatigue design truck. This is a two-lane bridge located in Southeast Idaho 

near the city of Preston. Figure 95 shows the elevation view of the bridge. Figure 96 shows two girder 

cross-sections with longitudinal and transverse reinforcing bars. One span of this bridge was modeled 

with the assumption of it being simply-supported. This assumption is conservative knowing that 

supports allow for some moment reactions. Assuming that the closure pour connections experience 

loads exerted by the AASHTO design truck, a linear-elastic analysis was performed in ANSYS.  As it will be 

seen later, under the appropriate load combinations and load factors, the steel and concrete stresses 

are well within the linear range. To determine the longitudinal and transverse deformation of the span, 

which will affect the closure pour connection behavior, an effective modulus of concrete equal to 

𝐸𝑒𝑓𝑓. = 5.79 × 106 psi is used for the deck concrete and the rest of the girder. This effective value is 

determined using the ITD structural drawing material properties for concrete and steel and was based 

on the transverse steel in the 8-in. section of the deck (i.e., #6 bars @ 8”). Longitudinally, the deck bars 

are spaced @ 4.5”.  Although longitudinally the effective modulus results in a slightly larger value, 

conservatively the same effective transverse modulus was used everywhere. Concrete Poisson’s ratio of 

0.2 was assumed.  

 
Figure 95. Elevation view of the new design of the SH-36 Bridge over Bear River (NTS). 
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Figure 96. Girder section views of the SH-36 Bridge over Bear River (NTS). 
 

Note that in this bridge #6 bars are used at 8” on center, while in the laboratory experiments #5 bars 

were placed at 6” on center. Therefore, both cases have approximately the same amount of transverse 

steel. 

Loading and FE Modeling  

As shown in Figure 97, one set of truck wheels were placed on top of a closure pour under two types of 

AASHTO trucks: design truck (three axles), and fatigue design truck (five axles). Using classical influence 

line approach, both the three-axle and the five-axle trucks were placed longitudinally on the span to 

create the largest bending moment. This placement for the AASHTO design truck (three-axle) is shown in 

Figure 98. Here the lead axle is 54’ from the end of the span. 

In ANSYS the bridge span was modeled using 12 in. x 12 in. shell elements for the deck and the girders 

were modeled using beam elements. As seen in Figure 98, for the AASHTO design truck, the deck 

moments and stresses are found in two shell elements with one 16-kip load distributed over them. The 

remaining loads were treated as concentrated forces. Therefore, the patch area is 24”x12”. The moment 

values along the centerline of closure pour are determined. Note that the patch area is larger than 

10”x20” used by AASHTO, but the moment and stress values at the center of closure pour (forming the 

boundary between the two 12”x12” shell elements) were found which are larger than at the values at 

the closure pour interface. The alternative would have been to use a much finer mesh for the deck. 

Similar placement of the truck was considered for the fatigue truck. As shown in Figure 99, for the 

fatigue truck, two 8-kip pressures patches (shown in the ellipse in the figure) were used, each occupying 

two 12”x12” shell elements. Again, the moment and stresses at the center of the closure pour were 
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determined. Figures 100 and 101 show the bridge span model in ANSYS. From Figure 101, it can be seen 

that for better accuracy, shell elements with different thicknesses were used. 

 
Figure 97. Section view of the bridge with truck in one lane (NTS). 

 

 
Figure 98. Section view of the bridge with AASHTO design truck in one lane (NTS). 
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Figure 99. AASHTO fatigue truck with pressure placed on the patches that are circled. 

 

 

 

Figure 100. 3-D view of the bridge in ANSYS showing girder beam elements and deck shell elements.  
 

Initially, for transportation purposes, the girder deck will have approximately 1.5 in. less thickness than 

the final thickness. Once the girders are placed, a 1.5-in. concrete overlay will be placed on the deck as 

well as the future wearing surface. The added weight of these dead loads are 18.75 psf and 28 psf, 

respectively. For analysis, the AASHTO design truck live load will be increased by 33% to account for live 

load impact. The live load due to AASHTO fatigue truck will be increased by 15%. 

 

Centerline of 
closure pour 
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Figure 101. Section view of the bridge in ANSYS.  

Results under Added Dead Loads 

Figure 102 shows two side-by-side shell elements and the bending moments under dead loads of 1.5” 

concrete overlay (18.75 psf) and future wearing surface of 28 psf. Tables 15 shows the values of nodal 

forces and moments in global coordinates. Table 16 shows the values of element stresses in global 

coordinates. The values used in the analysis are highlighted in yellow. 

 
Figure 102. Deck shell elements under added dead loads.  
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Table 15. Nodal forces and moments in global coordinates (lb and lb-in.) under added dead loads. 

Element Node FX FY FZ MX MY Mz 
1955 2751 -10.903 -10949 1.8248 3708.2 -752.17 0.10340E-1 
1955 2890 5.6188 -10944 -26.148 3680.4 554.69 -0.15779 
1955 2891 10.873 10949 -25.327 -3714.3 584.27 -0.17230 
1955 2752 -5.5888 10944 2.9007 -3685.7 -724.00 -0.16376E-1 

 

Table 16. Element stresses in global coordinates (psi) under added dead loads. 

Element Node SX SY SZ SXY SYZ SXZ 
1955, top 2751 -10.387 -285.82 0 -0.28119 0 0 
1955, top 2890 -10.387 -285.82 0 -0.28119 0 0 
1955, top 2891 -10.387 -285.82 0 -0.28119 0 0 
1955, top 2752 -10.387 -285.82 0 -0.28119 0 0 

1955, bottom 2751 10.044 -170.28 0 0.17082 0 0 
1955, bottom 2890 10.044 -170.28 0 0.17082 0 0 
1955, bottom 2891 10.044 -170.28 0 0.17082 0 0 
1955, bottom 2752 10.044 -170.28 0 0.17082 0 0 

 

From the above tables, the maximum moment and the maximum bending (normal) stress values under 

the added dead loads are as follows: 

𝑀𝑚𝑎𝑥 = 0.752 + 0.724 = 1.48 kip-in.  

Max. bending stress at the bottom (𝜎𝑥)𝑚𝑎𝑥 = 10.0 psi 

Results under AASHTO Design Truck Load 

Next, the moments and bending stresses are calculated under AASHTO design truck placed as shown in 

Figure 98.  The values on the same two shell elements, shown in Figure 102(a), are given in Tables 17 

and 18.  Again, as noted previously, a pressure load caused by a 16-kip force is placed on the two shell 

elements, while other loads are treated as point loads. From the tables, the maximum moment and the 

maximum bending (normal) stress values are: 

𝑀𝑚𝑎𝑥 = 26.29 + 26.47 = 52.76 kip-in. 

Max. bending stress at the bottom (𝜎𝑥)𝑚𝑎𝑥 = 364.6 psi 
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Table 17. Nodal forces and moments in global coordinates (lb and lb-in.) under AASHTO design truck. 

Element Node FX FY FZ MX MY Mz 
1955 2751 -142.37 -6951.7 -1474.4 14808 -26287 -1.0586 
1955 2890 -373.45 -6439.7 -2541.1 14662 20057 -1.5290 
1955 2891 142.26 6955.8 -2525.5 -14583 19900 -0.35350 
1955 2752 373.56 6435.6 -1459.0 -15072 -26469 0.15170 

 

Table 18. Element stresses in global coordinates (psi) under AASHTO design truck. 

Element Node SX SY SZ SXY SYZ SXZ 
1955, top 2751 -359.75 -370.45 0 -4.0395 0 0 
1955, top 2890 -359.75 -370.45 0 -4.0395 0 0 
1955, top 2891 -359.75 -370.45 0 -4.0395 0 0 
1955, top 2752 -359.75 -370.45 0 -4.0395 0 0 

1955, bottom 2751 364.57 91.466 0 -6.7092 0 0 
1955, bottom 2890 364.57 91.466 0 -6.7092 0 0 
1955, bottom 2891 364.57 91.466 0 -6.7092 0 0 
1955, bottom 2752 364.57 91.466 0 -6.7092 0 0 

 

Results under AASHTO Fatigue Truck Load 

The results under AASHTO fatigue truck placed as shown in Figure 99 are shown in Tables 19 and 20.  

The patch that resulted in larger values was used. This patch is located on the left side within the ellipse 

shown in Figure 99. The two 8-kip loads on the patches within the ellipse were placed as pressure, while 

other loads were placed as point loads. Two 12”x 12” side-by-side shell elements as shown in Figure 

102(a), were used for each patch. From the tables, the maximum moment and the maximum bending 

(normal) stress values are: 

𝑀𝑚𝑎𝑥 = 17.79 + 18.46 = 36.24 kip-in. 

Max. bending stress at the bottom (𝜎𝑥)𝑚𝑎𝑥 = 259.5 psi 

Table 19. Nodal forces and moments in global coordinates (lb and lb-in.) under AASHTO fatigue truck. 

Element Node FX FY FZ MX MY Mz 
1943 2748 -299.10 -6238.6 -700.47 8271.8 -17785 -0.45210 
1943 2887 -405.02 -55382 -1240.9 8893.5 15374 0.11313 
1943 2888 298.94 6242.2 -1288.1 -7784.2 14522 1.1558 
1943 2749 405.18 5534.6 -770.89 -8675.6 -18457 0.63583 
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Table 20. Element stresses in global coordinates (psi) under AASHTO fatigue truck. 

Element Node SX SY SZ SXY SYZ SXZ 
1943, top 2748 -257.25 -254.02 0 -1.1268 0 0 
1943, top 2887 -257.25 -254.02 0 -1.1268 0 0 
1943, top 2888 -257.25 -254.02 0 -1.1268 0 0 
1943, top 2749 -257.25 -254.02 0 -1.1268 0 0 

1943, bottom 2748 259.46 8.6728 0 -13.541 0 0 
1943, bottom 2887 259.46 8.6728 0 -13.541 0 0 
1943, bottom 2888 259.46 8.6728 0 -13.541 0 0 
1943, bottom 2749 259.46 8.6728 0 -13.541 0 0 

 

Applicable AASHTO Limit States 

The following load combinations were considered: 

Strength I Limit State for flexural capacity: 

1.5 𝐷𝑊 + 1.75 𝐿𝐿 (1 + 𝐼𝑀) 

Where, 𝐷𝑊 = dead load due to concrete overlay wearing surface; 𝐿𝐿 = live load (AASHTO design truck); 

and 𝐼𝑀 =  impact factor = 0.33. 

Service I Limit State for controlling flexural cracking: 

1.0 𝐷𝑊 +  1.0 𝐿𝐿 (1 + 𝐼𝑀) 

Where, 𝐼𝑀 = 0.33. 

Fatigue I Limit State for infinite load-induced fatigue life: 

1.5 𝐿𝐿 (1 + 𝐼𝑀) 

Where, 𝐿𝐿 = live load due to AASHTO fatigue truck, 𝐼𝑀 = 0.15.  

Strength I Limit State for Flexural Capacity 

The ultimate moment in the bridge deck imposed by the dead load and AASHTO design truck live load 

for a one-foot width FE shell element is: 

𝑀𝑢 = 1.5(1.48) + 1.75(52.76)(1 + 0.33) = 125.0 kip-in. 

The reduced moment capacity based on experimental results under three-point bending with the same 

one-foot width (i.e., using value of 147.1 kip-in. from Table 14) is: 
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𝜙𝑀𝑛 = 0.9(147.1) = 132.4 kip-in. > 𝑀𝑢    O.K. 

Note that in a bridge there are longitudinal bars at each closure pour at the top and bottom. This, plus 

the two-way action of the bridge deck will help in increasing the moment capacity. Therefore, in an 

actual bridge, the value of nominal bending moment capacity, 𝑀𝑛, is probably larger than 147 kip-in. per 

foot of the closure pour connection.  

Service I Limit State for Controlling Flexural Cracking 

Recall from the laboratory experiments on interface bond strength between closure pour (Mix D) and 

precast concrete using the ASTM C78 (see Table 10 in Chapter 4), a modulus of rupture 𝑓𝑟 =  612 psi was 

obtained.   

From the FE analysis, the deck maximum concrete bending stress under the added dead load and 

AASHTO design truck live load is: 

𝑓𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 1.0(10) + 1.0(364.6)(1 + 0.33) = 494.9 𝑝𝑠𝑖 < 𝑓𝑟 = 612 𝑝𝑠𝑖   O.K. 

Note that in the FE model the stresses are obtained at the center of the closure pour which are larger 

than those at the interface. 

Fatigue I Limit State for Infinite Load-induced Fatigue Life 

The requirements of the AASHTO LRFD Bridge Design Specs. Article 5.5.3 – Fatigue Limit State are 

followed in this section.  

The maximum moment in the deck under the AASHTO fatigue truck live load is: 

𝑀𝑚𝑎𝑥 = 1.5(36.25)(1 + 0.15) = 62.5  kip-in. 

From Figure 103 shown below (this is the same figure as Figure 93 from Chapter 5), the stress in the bar 

at the interface under the beam three-point bending and factored moment of 62.5 kip-in. is 

approximately equal to 4 ksi. 

For the stress range, let’s double the effect (very conservative!). This will give: 

𝛾(𝛥𝑓𝑠) = 8 𝑘𝑠𝑖 

Where, 𝛾(𝛥𝑓𝑠) = factored live load stress range in the steel bar. 

The constant-amplitude fatigue threshold, (𝛥𝐹)𝑇𝐻, for reinforcement is: 

(𝛥𝐹)𝑇𝐻 = 24 − 0.33𝑓𝑚𝑖𝑛                         AASHTO Eq. (5.5.3.2-1) 

Where, 𝑓𝑚𝑖𝑛= minimum live-load stress resulting from the Fatigue I load combination, combined with 

the more severe stress from either the permanent loads or the permanent loads, shrinkage, and creep-

induced external loads; positive if tension, negative if compression (ksi). 



Effectiveness of High-Early Strength Concrete Class 50AF with Polypropylene Fibers as a Cost-Effective Alternative for Field-Cast 
Connections of Precast Elements in Accelerated Bridge Construction 

96 
 

Assume 𝑓𝑚𝑖𝑛 = 0.  Therefore,  

(𝛥𝐹)𝑇𝐻 = 24  𝑘𝑠𝑖 

𝛾(𝛥𝑓𝑠) < (𝛥𝐹)𝑇𝐻   O.K.                               AASHTO Eq. (5.5.3.1-1) 

 
Figure 103. Moment vs. rebar stress for the three-point bending test. 

 

Therefore, according to the requirements of AASHTO LRFD Bridge Design Specs. Article 5.5.3, the closure 

pour can withstand infinite number of fatigue truck load cycles without headed bar experiencing fatigue 

failure. 

Fatigue analysis requires cracked section properties if “sum of stresses, due to unfactored permanent 

loads and prestress, and the Fatigue I load combination is tensile and exceeds 0.095√𝑓𝑐
′. ” 

In the case of bridge considered, both the precast and closure pour (Mix D) have almost the same 

compressive strength of 8.5 ksi  ⇒  0.095√𝑓𝑐
′ = 0.277 ksi = 277 psi. 

The sum of maximum bending stresses in concrete at the bottom of the deck due to unfactored loads is: 

10 + 259.5 ≅ 270 psi. 

Therefore, the use of uncracked section properties in the bridge model is acceptable.  

4 ksi (approx.) 
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Chapter 7 

Summary, Conclusions, and Future Work  

The objectives of this research project were to (a) obtain experimental data on the behavior of several 

mixes containing HES concrete Class 50AF with and without polypropylene fibers and select the 

optimum mix for use as a closure pour material between Deck Bulb-T Girders; and (b) use the 

experimental results to create a computer model of the proposed closure pour detail and provide an 

indication of fatigue performance under repeated loading. To accomplish these objectives, five main 

tasks were performed. In the following paragraphs, summary and conclusions are provided for each 

task. At the end, the future work that is directly related to this project is briefly noted.     

Summary and Conclusions of the Tasks Performed 

Task 1  

This task was to perform a literature review. Five main sections were covered: (a) an overview of the 

field-cast connections of prefabricated bridge elements; (b) related testing methods; (c) preparation of 

laboratory concrete specimens; (d) materials needed for the closure pour, including bonding agent and 

polypropylene fibers; and (e) literature needed for computer modeling. Literature review revealed that 

high performance fiber-reinforced concrete has been used as an alternate material to UHPC in 

connecting certain bridge precast components. Work by others gave insight as to the appropriate ASTM 

testing methods and sample preparation techniques. It was also concluded that rebar bond-slip plays an 

important role in numerical modeling. 

Task 2  

Task 2 was to select HES concrete mixes with and without polypropylene fibers and other additives. This 

task was done with direct input from the TAC members. Six mixes were selected. Compressive strength, 

tensile strength, and shrinkage behavior of each mix were determined. Mix D, containing 1.5 lb/yd3 of 

fiber and shrinkage reducing admixture, performed the best. It had the largest compressive and tensile 

strength values and the lowest shrinkage value. These values were 8,864 psi, 837 psi, and 522 

microstrain, respectively. For computer modeling, modulus of elasticity and Poisson’s ratio of the 

optimum mix were also obtained. 

Task 3  

Task 3 was to obtain the interface bond strength and perform headed bar pull-out tests. With input 

from TAC, Mixes D and E with and without bonding agent were selected for the ASTM C78 four-point 

bending tests. Mix E contained 0.75 lb/yd3 of fiber, shrinkage reducing admixture, and bonding 

admixture. Mix D without the bonding agent performed the best with bond strength (modulus of 

rupture) value of 612 psi. In contrast, De la Varga, Haber, and Graybeal (2016) obtained a value of 712 
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psi for the interface bond strength between UHPC and precast concrete with exposed aggregate 

surface.(1) 

Next, headed bar tensile strength tests were performed in a closure pour connection with the optimum 

mix. The specimen represents the lower half portion of a closure pour section. Six headed bar pull-out 

specimens were tested. The primary mode of failure in all headed bar pull-out tests was cracking of the 

concrete. No surface spalling was observed at any point during the tests. Cracking initiated at the top 

interface and propagated horizontally across the sample. Then, the bottom interface began to show 

formation of cracks. After reaching the ultimate load, there was a sudden drop in load and the specimen 

cracked along the center rebar and down into the lower precast concrete section. Conical cracks also 

developed at the location of the center rebar head. The average ultimate pull-out force was 12,511 lb. 

Even after the failure of the upper interface, the strut action between the opposing lapped bars was 

effective, resulting in upper bar stress of 40.4 ksi or 67% of the steel specified yield strength. The most 

useful data was the relationship between total tensile force in the specimen and the force carried by the 

head of the upper bars. This relationship was used to calibrate the FE model of the pull-out specimen. 

Task 4  

Task 4 was to perform three-point and four-point flexural tests of beams composed of two precast 

segments with the optimum mix closure pour segment in the middle. ITD’s 10-in. closure pour detail was 

used. Three of each beam tests were performed. In both cases of three-point bending and four-point 

bending, the initial crack always formed on the lower right of the interface between closure pour and 

precast. This was a limitation of the beam specimens; i.e., unsymmetrical placement of reinforcing and 

the small width of the beam. Both the three-point and four-point loading tests had almost the same 

ultimate moment capacity of about 147 kip-in. The mid-span moment versus the stress next to the head 

of the headed bars (where the strain gages were installed) provided the most useful information. This 

data was used for comparing results with the FE model results.  

Task 5  

This task had two components. The first one was to develop the FE models for headed bar pull-out and 

the beam specimens and compare the results with the experimental test results. In addition, the task 

required investigation of the adequacy of the connection with the optimum mix between the Deck Bulb-

T girders of a typical bridge.  

The FE models of the pull-out and beam specimens performed well in the linear region and resulted in 

very good agreements with the experimental results of moment versus stress in the bar next to the 

head. The agreement in the nonlinear region was not as good with the beam bending tests. Although 

not measured in the experiments, the FE model of the beam showed a larger bar stress at the interface 

compared to the bar stress next to the head. Rebar bond-slip had a big role in capturing the 

experimental results. With no bond-slip, the head carries less force in the FE model than what was 

observed in the experiments. This was true for both the pull-out test and the beam bending test. More 
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work needs to be done in refining the FE model of the beam bending test to improve the response in the 

nonlinear region.   

Next, a bridge with Deck Bulb-T girders connected with Mix D was modeled in ANSYS. This bridge is the 

new design of the SH-36 Bridge over Bear River near Preston, Idaho. For this task linear-elastic behavior 

was considered. The closure pour connection performed well under three AASHTO limit states: (1) 

Strength I Limit State for flexural capacity; (2) Service I Limit State for controlling flexural cracking; and 

(3) Fatigue I Limit State for infinite load-induced fatigue life.  

Future Work 

The second phase of this project has been approved. This phase involves instrumenting the SH-36 Bridge 

over Bear River with strain gages placed over the headed bars and on the concrete surface below the 

bridge deck along a transverse section close to the southwest abutment. Early in 2018, the bridge 

girders were fabricated. They will be installed during the summer and early fall 2018. In May 2018, the 

bridge girder headed bars were instrumented in the precasting yard. Based on the results of the first 

phase, headed bars have been instrumented next to the head and next to the precast interface. The 

closure pour material for this bridge is a mix similar to the optimum mix found in the laboratory. Among 

the tasks planned are: strain data measurement in the bridge under a known truck load, data acquisition 

under commercial truck loading, data analysis, and refining the FE model of ITD’s 10-in. closure pour 

detail. 
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